【題目】如圖,小明為了測(cè)量小河對(duì)岸大樹BC的高度,他在點(diǎn)A測(cè)得大樹頂端B的仰角為45°,沿斜坡走3米到達(dá)斜坡上點(diǎn)D,在此處測(cè)得樹頂端點(diǎn)B的仰角為31°,且斜坡AF的坡比為12

1)求小明從點(diǎn)A到點(diǎn)D的過(guò)程中,他上升的高度;

2)大樹BC的高度約為多少米?(參考數(shù)據(jù):sin31°≈0.52,cos31°≈0.86tan31°≈0.60

【答案】1)小明從點(diǎn)A到點(diǎn)D的過(guò)程中,他上升的高度為3米;(2)大樹的高度約為16.5米.

【解析】

1)作DHAEH,解RtADH,即可求出DH;

2)延長(zhǎng)BDAE于點(diǎn)G,解RtGDH、RtADH,求出GH、AH,得到AG;設(shè)BC=x米,根據(jù)正切的概念用x表示出GCAC,根據(jù)GCAC=AG列出方程,解方程得到答案.

1)作DHAEH,如圖1所示:

RtADH中,∵,∴AH=2DH

AH2+DH2=AD2,∴(2DH2+DH2=32,∴DH=3

答:小明從點(diǎn)A到點(diǎn)D的過(guò)程中,他上升的高度為3米;

2)如圖2所示:延長(zhǎng)BDAE于點(diǎn)G,設(shè)BC=xm,由題意得:∠G=31°,∴GH5

AH=2DH=6,∴GA=GH+AH=5+6=11

RtBGC中,tanG,∴CGx

RtBAC中,∠BAC=45°,∴AC=BC=x

GCAC=AG,∴xx=11,解得:x=16.5

答:大樹的高度約為:16.5米.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一次數(shù)學(xué)活動(dòng)課中,某數(shù)學(xué)小組探究求環(huán)形花壇(如圖所示)面積的方法,現(xiàn)有以下工具;①卷尺;②直棒EF;T型尺(CD所在的直線垂直平分線段AB).

(1)在圖1中,請(qǐng)你畫出用T形尺找大圓圓心的示意圖(保留畫圖痕跡,不寫畫法);

(2)如圖2,小華說(shuō):我只用一根直棒和一個(gè)卷尺就可以求出環(huán)形花壇的面積,具體做法如下:

將直棒放置到與小圓相切,用卷尺量出此時(shí)直棒與大圓兩交點(diǎn)M,N之間的距離,就可求出環(huán)形花壇的面積如果測(cè)得MN=10m,請(qǐng)你求出這個(gè)環(huán)形花壇的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,BE,CD分別是邊AC、AB上的中線,BECD相交于點(diǎn)O,BE6,則OE_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知銳角∠AOB如圖,(1)在射線OA上取一點(diǎn)C,以點(diǎn)O為圓心,OC長(zhǎng)為半徑作,交射線OB于點(diǎn)D,連接CD;

2)分別以點(diǎn)C,D為圓心,CD長(zhǎng)為半徑作弧,交于點(diǎn)M,N;

3)連接OM,MN

根據(jù)以上作圖過(guò)程及所作圖形,下列結(jié)論中錯(cuò)誤的是(

A. ∠COM=∠CODB. OM=MN,則∠AOB=20°

C. MN∥CDD. MN=3CD

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,RtABC中,AB6,AC8.動(dòng)點(diǎn)E,F同時(shí)分別從點(diǎn)AB出發(fā),分別沿著射線AC和射線BC的方向均以每秒1個(gè)單位的速度運(yùn)動(dòng),連接EF,以EF為直徑作⊙O交射線BC于點(diǎn)M,連接EM,設(shè)運(yùn)動(dòng)的時(shí)間為tt0).

1)當(dāng)點(diǎn)E在線段AC上時(shí),用關(guān)于t的代數(shù)式表示CE   ,CM   .(直接寫出結(jié)果)

2)在整個(gè)運(yùn)動(dòng)過(guò)程中,當(dāng)t為何值時(shí),以點(diǎn)E、FM為頂點(diǎn)的三角形與以點(diǎn)A、B、C為頂點(diǎn)的三角形相似?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線y=x22kx+3k+4

1)拋物線經(jīng)過(guò)原點(diǎn)時(shí),求k的值.

2)頂點(diǎn)在x軸上時(shí),求k的值;

3)頂點(diǎn)在y軸上時(shí),求k的值;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系中,過(guò)點(diǎn)A(﹣,0)的兩條直線分別交y軸于B、C兩點(diǎn),且B、C兩點(diǎn)的縱坐標(biāo)分別是一元二次方程x2﹣2x﹣3=0的兩個(gè)根

(1)求線段BC的長(zhǎng)度;

(2)試問:直線AC與直線AB是否垂直?請(qǐng)說(shuō)明理由;

(3)若點(diǎn)D在直線AC上,且DB=DC,求點(diǎn)D的坐標(biāo);

(4)在(3)的條件下,直線BD上是否存在點(diǎn)P,使以A、B、P三點(diǎn)為頂點(diǎn)的三角形是等腰三角形?若存在,請(qǐng)直接寫出P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于x的一元二次方程x2+2k+1x+k2+1=0有兩個(gè)不等實(shí)根x1、x2

1)求實(shí)數(shù)k的取值范圍

2)若方程兩實(shí)根x1、x2滿足x1+x2=﹣x1x2k的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,中,,以為直徑作⊙,分別交,于點(diǎn),.

(1)求證:;

(2),求的度數(shù);

(3)過(guò)點(diǎn)作⊙的切線,交的延長(zhǎng)線于點(diǎn),當(dāng)時(shí),求圖中陰影部分的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案