【題目】如圖,已知、、都與垂直,垂足分別是,,,且,,那么的長( )
A.6B.9C.12D.16
【答案】C
【解析】
因?yàn)?/span>AB、CD、EF都與BD垂直,得AB∥CD∥EF,得∠C=∠ABE,∠CDE=∠A,即△ABE∽△DCE,所以,AB=4,求得BE×CD=4EC,因?yàn)?/span>EF∥CD,所以∠BEF=∠BCD,∠EBF=∠CBD,∠BFE=∠BDC,即△BEF∽△BCD,即,EF=3, 可得BE×CD=3BC=3(BE+EC),即4EC=3BE+3EC,BC=4BE,可求CD;
∵AB、CD、EF都與BD垂直,
∴AB∥CD∥EF,
∵AB∥CD,
∴∠C=∠ABE,∠CDE=∠A,
∴△ABE∽△DCE,
∴,AB=4,
∴BE×CD=4EC,
∵EF∥CD,
∴∠BEF=∠BCD,∠EBF=∠CBD,∠BFE=∠BDC,
∴△BEF∽△BCD,
∴,EF=3,
∴BE×CD=3BC=3(BE+EC),
∴4EC=3BE+3EC,
∴EC=3BE,
∴BC=4BE,
∴=3CD,
∴CD=12;
故選:C.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】制作一種產(chǎn)品,需先將材料加熱達(dá)到60 ℃后,再進(jìn)行操作.設(shè)該材料溫度為y(℃),從加熱開始計(jì)算的時(shí)間為x(min).據(jù)了解,當(dāng)該材料加熱時(shí),溫度y與時(shí)間x成一次函數(shù)關(guān)系;停止加熱進(jìn)行操作時(shí),溫度y與時(shí)間x成反比例關(guān)系(如圖).已知該材料在操作加熱前的溫度為15 ℃,加熱5分鐘后溫度達(dá)到60 ℃.
(1)分別求出將材料加熱和停止加熱進(jìn)行操作時(shí),y與x的函數(shù)關(guān)系式;
(2)根據(jù)工藝要求,當(dāng)材料的溫度低于15 ℃時(shí),須停止操作,那么從開始加熱到停止操作,共經(jīng)歷了多少時(shí)間?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面內(nèi)容,并按要求解決問題: 問題:“在平面內(nèi),已知分別有個(gè)點(diǎn),個(gè)點(diǎn),個(gè)點(diǎn),5 個(gè)點(diǎn),…,n 個(gè)點(diǎn),其中任意三 個(gè)點(diǎn)都不在同一條直線上.經(jīng)過每兩點(diǎn)畫一條直線,它們可以分別畫多少條直線? ” 探究:為了解決這個(gè)問題,希望小組的同學(xué)們設(shè)計(jì)了如下表格進(jìn)行探究:(為了方便研 究問題,圖中每條線段表示過線段兩端點(diǎn)的一條直線)
請解答下列問題:
(1)請幫助希望小組歸納,并直接寫出結(jié)論:當(dāng)平面內(nèi)有個(gè)點(diǎn)時(shí),直線條數(shù)為 ;
(2)若某同學(xué)按照本題中的方法,共畫了條直線,求該平面內(nèi)有多少個(gè)已知點(diǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P是等邊三角形ABC內(nèi)的一點(diǎn),且PA=6,PB=8,PC=10.
(1)尺規(guī)作圖:作出將△PAC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°后所得到的△P′AB(不要求寫作法,但需保留作圖痕跡).
(2)求點(diǎn)P與點(diǎn)P′之間的距離及∠APB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某區(qū)為了了解九年級學(xué)生身體素質(zhì)情況,從中隨機(jī)抽取了部分學(xué)生進(jìn)行測試,測試成績的最高分為30分,最低分為23分,按成績由低到高分成五組(每組教據(jù)可含最大值,不含最小值),繪制的頻率分布直方圖中缺少了28.5分~30分的一組(如圖所示),已知27分~28.5分一組的頻率為0.31,且這組學(xué)生人數(shù)比25.5分~27分這組學(xué)生多了28人,根據(jù)圖示及上述相關(guān)信息解答下列問題:
(1)寫出從左至右前三組的頻率;
(2)在圖中補(bǔ)畫28.5分~30分一組的小矩形;
(3)求測試時(shí)抽樣的人數(shù);
(4)求測試成績的中位數(shù)落在第幾組;
(5)如果全區(qū)共有3600名九年級學(xué)生,估計(jì)成績大于27分的學(xué)生約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)和反比例函數(shù).
(1)如圖1,若,且函數(shù)、的圖象都經(jīng)過點(diǎn).
①求,的值;
②直接寫出當(dāng)時(shí)的范圍;
(2)如圖2,過點(diǎn)作軸的平行線與函數(shù)的圖象相交于點(diǎn),與反比例函數(shù)的圖象相交于點(diǎn).
①若,直線與函數(shù)的圖象相交點(diǎn).當(dāng)點(diǎn)、、中的一點(diǎn)到另外兩點(diǎn)的距離相等時(shí),求的值;
②過點(diǎn)作軸的平行線與函數(shù)的圖象相交于點(diǎn).當(dāng)的值取不大于1的任意實(shí)數(shù)時(shí),點(diǎn)、間的距離與點(diǎn)、間的距離之和始終是一個(gè)定值.求此時(shí)的值及定值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(如圖,⊙O是△ABC的外接圓,圓心O在AB上,且∠B=2∠A,M是OA上一點(diǎn),過M作AB的垂線交AC于點(diǎn)N,交BC的延長線于點(diǎn)E,直線CF交EN于點(diǎn)F,EF=FC.
(1)求證:CF是⊙O的切線;
(2)若⊙O的半徑為2,且AC=CE,求AM的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們知道,三角形的內(nèi)心是三條角平分線的交點(diǎn),過三角形內(nèi)心的一條直線與兩邊相交,兩交點(diǎn)之間的線段把這個(gè)三角形分成兩個(gè)圖形.若有一個(gè)圖形與原三角形相似,則把這條線段叫做這個(gè)三角形的“內(nèi)似線”.
(1)等邊三角形“內(nèi)似線”的條數(shù)為 ;
(2)如圖,△ABC中,AB=AC,點(diǎn)D在AC上,且BD=BC=AD,求證:BD是△ABC的“內(nèi)似線”;
(3)在Rt△ABC中,∠C=90°,AC=4,BC=3,E、F分別在邊AC、BC上,且EF是△ABC的“內(nèi)似線”,求EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】瑪麗和馮剛做一種游戲,在一個(gè)不透明的布袋里裝有4個(gè)大小、質(zhì)地均相同小球,球上分別標(biāo)有數(shù)字1、2、3、4,隨機(jī)從布袋中摸出一個(gè)小球,記下數(shù)字后放回布袋里,再隨機(jī)從布袋中摸出一個(gè)小球,若這兩個(gè)小球上的數(shù)字之和能被2整除的概率大則瑪麗贏;若兩個(gè)小球上的數(shù)字之和能被3整除的概率大則馮剛贏。這個(gè)游戲雙方公平嗎?請列表格或畫樹狀圖說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com