【題目】如圖,已知點A是反比例函數(shù) y = (x>0 )的圖象上的一個動點,連接OA ,OB⊥OA,且OB =2OA.那么經(jīng)過點B的反比例函數(shù)的表達式為( )
A.y=-B.y= C.y=-D.y=
【答案】C
【解析】
過A作AC⊥y軸,BD⊥y軸,可得∠ACO=∠BDO=90°,利用三角關(guān)系得到三角形相似,由相似得比例求出相似比,確定出面積比,求出三角形AOC面積,進而確定出三角形OBD面積,利用反比例函數(shù)k的幾何意義確定出所求k的值,即可確定出解析式.
過A作AC⊥y軸,BD⊥y軸,可得∠ACO=∠BDO=90°,
∵∠AOC+∠OAC=90°,∠AOC+∠BOD=90°,
∴∠OAC=∠BOD,
∴△AOC∽△OBD,
∵OB=2OA,
∴△AOC與△OBD相似比為1:2,
∴: =1:4,
∵點A在反比例的圖象上,
∴△AOC面積為,
∴△OBD面積為2,
經(jīng)過點B的反比例函數(shù)的表達式為,
∴,即,
∵,
∴,
則經(jīng)過點B的反比例解析式為.
故選:C.
科目:初中數(shù)學 來源: 題型:
【題目】甲乙兩位同學利用燈光下的影子來測量一路燈A的高度,如圖,當甲走到點C處時,乙測得甲直立身高CD與其影子長CE正好相等,接著甲沿BC方向繼續(xù)向前走,走到點E處時,甲直立身高EF的影子恰好是線段EG,并測得EG=2.5m.已知甲直立時的身高為1.75m,求路燈的高AB的長.(結(jié)果精確到0.1m)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一座古拱橋的截面圖,拱橋橋洞上沿是拋物線形狀,拋物線兩端點與水面的距離都是1米,拱橋的跨度為10米,橋洞與水面的最大距離是5米,橋洞兩側(cè)壁上各有一盞距離水面4米的景觀燈,兩盞景觀燈之間的水平距離為________米.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知點為平面直角坐標系中不重合的兩點,以點為圓心且經(jīng)過點作,則稱點為的“關(guān)聯(lián)點”, 為點的“關(guān)聯(lián)圓”.
(1)已知的半徑為1,在點中,的“關(guān)聯(lián)點”為____________(填寫字母);
(2)若點,點,為點的“關(guān)聯(lián)圓”,且的半徑為,求的值;
(3)已知點,點,是點的“關(guān)聯(lián)圓”,直線與軸,軸分別交于點。若線段上存在的“關(guān)聯(lián)點”,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關(guān)于的一元二次方程
(1)若方程有實數(shù)根,求實數(shù)的取值范圍;
(2)若方程兩實數(shù)根分別為,且滿足,求實數(shù)的值。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法正確的是( )
A. 隨機拋擲一枚均勻的硬幣,落地后反面一定朝上。
B. 從1,2,3,4,5中隨機取一個數(shù),取得奇數(shù)的可能性較大。
C. 某彩票中獎率為,說明買100張彩票,有36張中獎。
D. 打開電視,中央一套正在播放新聞聯(lián)播。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知:拋物線交x軸于A,C兩點,交y軸于點B,且OB=2CO.
(1)求二次函數(shù)解析式;
(2)在二次函數(shù)圖象位于x軸上方部分有兩個動點M、N,且點N在點M的左側(cè),過M、N作x軸的垂線交x軸于點G、H兩點,當四邊形MNHG為矩形時,求該矩形周長的最大值;
(3) 拋物線對稱軸上是否存在點P,使得△ABP為直角三角形?若存在,請直接寫出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y1=﹣x+4,y2=x+b都與雙曲線y=交于點A(1,m),這兩條直線分別與x軸交于B,C兩點.
(1)求y與x之間的函數(shù)關(guān)系式;
(2)直接寫出當x>0時,不等式x+b>的解集;
(3)若點P在x軸上,連接AP把△ABC的面積分成1:3兩部分,求此時點P的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com