【題目】如圖1,將沿翻折,點(diǎn)的對(duì)稱點(diǎn)是點(diǎn),,
(1)求證:四邊形是菱形;
(2)如圖2,在上取一點(diǎn),連接并延長至點(diǎn),在上取一點(diǎn),連接,若,求證:.
【答案】(1)證明見解析;(2)證明見解析.
【解析】
(1)根據(jù)翻折前后對(duì)應(yīng)邊相等,對(duì)應(yīng)角相等,再結(jié)合平行線的性質(zhì)可證AB=BC,所以四邊形四條邊相等,由此可證;
(2)根據(jù)三角形內(nèi)角和定理和三角形外角定理對(duì)等式的左右兩邊進(jìn)行化簡可得,從而證明結(jié)論.
解:(1)∵沿翻折,
∴AB=AD,BC=CD,∠BAC=∠DAC,
∵AD∥BC,
∴∠DAC=∠ACB,
∴∠BAC=∠ACB,
∴AB=BC,
∴AB=BC=CD=AD,
∴四邊形ABCD為菱形;
(2)∵∠BAC=∠ACB,
∴∠EBC+∠BAC=∠EBC+∠ACB=∠AEB,
∴,
又∵,,
∴,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)O是△ABC內(nèi)一點(diǎn),連結(jié)OB、OC,并將AB、OB、OC、AC的中點(diǎn)D、E、F、G依次連結(jié),得到四邊形DEFG.
(1)求證:四邊形DEFG是平行四邊形;
(2)如果∠OBC=45°,∠OCB=30°,OC=4,求EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在□ABCD中,點(diǎn)E是邊AD上一點(diǎn),且AE=AB.
(1)作∠BCD的角平分線CF,交AD于F點(diǎn),交BE于G點(diǎn);(尺規(guī)作圖,保留痕跡,不寫畫法)
(2)在(1)的條件下,
①求∠BGC的度數(shù);
②設(shè)AB=a,BC=b,則線段EF= (用含a,b的式子表示);
③若AB=10,CF=12,求BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】體育委員統(tǒng)計(jì)了全班同學(xué)60秒跳繩的次數(shù),并列出下面的頻數(shù)分布
次數(shù) | 60≤x<80 | 80≤x<100 | 100≤x<120 |
頻數(shù) | 1 | 2 | 25 |
次數(shù) | 120≤x<140 | 140≤x<160 | 160≤x<180 |
頻數(shù) | 15 | 5 | 2 |
(1)全班有多少學(xué)生?
(2)組距是多少?組數(shù)是多少
(3)跳繩次數(shù)x在100≤x<140范圍的學(xué)生占全班學(xué)生的百分之幾?
(4)畫出適當(dāng)?shù)慕y(tǒng)計(jì)圖表示上面的信息.
(5)你怎樣評(píng)價(jià)這個(gè)班的跳繩成績?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:二次函數(shù)y=ax2+bx+c的圖象如圖所示,OA=OC,則由拋物線的特征寫出如下含有a、b、c三個(gè)字母的等式或不等式:①=-1;②ac+b+1=0;③abc>0;④a-b+c>0.正確的序號(hào)是______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】要設(shè)計(jì)一幅寬20cm,長30cm的矩形圖案,其中有兩橫兩豎的彩條,橫、豎彩條的寬度比為2∶3,如果要使所有彩條所占面積為原矩形圖案面積的三分之一,應(yīng)如何設(shè)計(jì)每個(gè)彩條的寬度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的頂點(diǎn)B、C在x軸的正半軸上,反個(gè)比例函數(shù)y= (k≠0)在第一象限的圖象經(jīng)過點(diǎn)A(m,2)和CD邊上的點(diǎn)E(n, ),過點(diǎn)E作直線l∥BD交y軸于點(diǎn)F,則點(diǎn)F的坐標(biāo)是( )
A. (0,- )B. (0,- )
C. (0,-3)D. (0,- )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,P是∠BAC內(nèi)的一點(diǎn),PE⊥AB,PF⊥AC,垂足分別為點(diǎn)E,F,AE=AF.求證:
(1)PE=PF;
(2)點(diǎn)P在∠BAC的平分線上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,邊長為a,點(diǎn)O是對(duì)角線AC的中點(diǎn),點(diǎn)E是BC邊上的一個(gè)動(dòng)點(diǎn),OE⊥OF交AB邊于點(diǎn)F,點(diǎn)G,H分別是點(diǎn)E,F關(guān)于直線AC的對(duì)稱點(diǎn),點(diǎn)E從點(diǎn)C運(yùn)動(dòng)到點(diǎn)B時(shí),則圖中陰影部分的面積是___________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com