【題目】如圖,直線與相交于點(diǎn),對(duì)于平面內(nèi)任意一點(diǎn),點(diǎn)直線,的距離分別為,,則稱有序?qū)崝?shù)對(duì)是點(diǎn)的“距離坐標(biāo)”,根據(jù)上述定義,“距離坐標(biāo)”是的點(diǎn)的個(gè)數(shù)是( )
A. 2B. 3C. 4D. 5
【答案】C
【解析】
“距離坐標(biāo)”是(5,3)的點(diǎn)表示的含義是該點(diǎn)到直線,的距離分別為5、3,由于到直線的距離是5的點(diǎn)在與直線平行且與的距離是5的兩條平行線a、a上,到直線的距離是3的點(diǎn)在與直線平行且與的距離是3的兩條平行線b、b上,它們有4個(gè)交點(diǎn),即為所求.
如圖,
∵到直線的距離是5的點(diǎn)在與直線平行且與的距離是5的兩條平行線a、a上,到直線的距離是3的點(diǎn)在與直線平行且與的距離是3的兩條平行線b、b上,
∴“距離坐標(biāo)”是(5,3)的點(diǎn)是M、M、M 、M ,一共4個(gè).
故選C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,平行四邊形ABCD的中心E的坐標(biāo)為(2,0),若點(diǎn)A的坐標(biāo)為(-2,1),則點(diǎn)C的坐標(biāo)為( )
A. (4,-1)B. (6,-1)C. (8,-1)D. (6,-2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平行四邊形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,BD=2AD,E、F、G分別是OC、OD,AB的中點(diǎn).下列結(jié)論:①EG=EF;②△EFG≌△GBE;③FB平分∠EFG;④EA平分∠GEF;⑤四邊形BEFG是菱形.其中正確的是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在中,,,點(diǎn)為的中點(diǎn).
(1)如圖1,、分別是、上的點(diǎn),且,求證:為等腰直角三角形.
(2)如圖2,若、分別為,延長線上的點(diǎn),仍有,其他條件不變,那么,是否仍為等腰直角三角形?證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD是∠BAC的平分線,且∠B=∠ADB,過點(diǎn)C作CM垂直于AD的延長線,垂足為M.
(1)若∠DCM=α,試用α表示∠BAD;
(2)求證:AB+AC=2AM.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(生活常識(shí))
射到平面鏡上的光線(入射光線)和變向后的光線(反射光線)與平面鏡所夾的角相等。如圖 1,MN 是平面鏡,若入射光線 AO 與水平鏡面夾角為∠1,反射光線 OB 與水平鏡面夾角為∠2,則∠1=∠2 .
(現(xiàn)象解釋)
如圖 2,有兩塊平面鏡 OM,ON,且 OM⊥ON,入射光線 AB 經(jīng)過兩次反射,得到反射光線 CD.求證 AB∥CD.
(嘗試探究)
如圖 3,有兩塊平面鏡 OM,ON,且∠MON =55 ,入射光線 AB 經(jīng)過兩次反射,得到反射光線 CD,光線 AB 與 CD 相交于點(diǎn) E,求∠BEC 的大小.
(深入思考)
如圖 4,有兩塊平面鏡 OM,ON,且∠MON α ,入射光線 AB 經(jīng)過兩次反射,得到反射光線 CD,光線 AB 與 CD 所在的直線相交于點(diǎn) E,∠BED=β , α 與 β 之間滿足的等量關(guān)系是 .(直接寫出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,禁止捕魚期間,某海上稽查隊(duì)在某海域巡邏,上午某一時(shí)刻在A處接到指揮部通知,在他們東北方向距離12海里的B處有一艘捕魚船,正在沿南偏東75°方向以每小時(shí)10海里的速度航行,稽查隊(duì)員立即乘坐巡邏船以每小時(shí)14海里的速度沿北偏東某一方向出發(fā),在C處成功攔截捕魚船,求巡邏船從出發(fā)到成功攔截捕魚船所用的時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(感知)如圖①,AB∥CD,點(diǎn)E在直線AB與CD之間,連結(jié)AE、BE,試說明∠BAE+∠DCE=∠AEC;
(探究)當(dāng)點(diǎn)E在如圖②的位置時(shí),其他條件不變,試說明∠AEC+∠BAE+∠DCE=360°;
(應(yīng)用)點(diǎn)E、F、G在直線AB與CD之間,連結(jié)AE、EF、FG和CG,其他條件不變,如圖③,若∠EFG=36°,則∠BAE+∠AEF+∠FGC+∠DCG=______°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一動(dòng)點(diǎn)從原點(diǎn)O出發(fā),按向上.向右.向下.向右的方向依次平移,每次移動(dòng)一個(gè)單位,得到點(diǎn)A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么點(diǎn)A2016的坐標(biāo)為________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com