【題目】如圖,在平面直角坐標(biāo)系中,△ABC 是等腰直角三角形,∠ABC=90°,AB平行x 軸,點(diǎn)C在 x 軸上,若點(diǎn)A,B分別在正比例函數(shù) y=6x 和 y=kx 的圖象上,則 k=__________.
【答案】
【解析】
根據(jù)點(diǎn)A在正比例函數(shù) y=6x的圖像上,設(shè)點(diǎn)A為(x,6x),由AB平行x 軸,AB=BC,可以得到點(diǎn)B的坐標(biāo)為:(7x,6x),代入計(jì)算,即可求出k的值.
解:∵點(diǎn)A在正比例函數(shù) y=6x的圖像上,
則設(shè)點(diǎn)A為(x,6x),
∵由AB平行x 軸,
∴點(diǎn)B的縱坐標(biāo)為6x,
∵△ABC是等腰直角三角形,∠ABC=90°,
∴AB=BC=6x,
∴點(diǎn)B的橫坐標(biāo)為:7x,
即點(diǎn)B為:(7x,6x),
把點(diǎn)B代入y=kx,則
,
∴;
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有長度分別為3cm、4cm、5cm、8cm的4根木條
(1)李鑫同學(xué)從中任取一根,抽到“長度是4cm的木條”的概率是 .
(2)在李鑫同學(xué)取出4cm的木條后,王華同學(xué)又從剩下的木條中,同時(shí)隨機(jī)取出兩根,求他們?nèi)〕龅娜緱l能構(gòu)成三角形的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l1:y=-0.5x+b分別與x軸、y軸交于A.B兩點(diǎn),與直線l2:y=kx-6交于點(diǎn)C(4,2).
(1)點(diǎn)A坐標(biāo)為(______,______),B為(______,______);
(2)在線段BC上有一點(diǎn)E,過點(diǎn)E作y軸的平行線交直線l2于點(diǎn)F,設(shè)點(diǎn)E的橫坐標(biāo)為m,當(dāng)m為何值時(shí),四邊形OBEF是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,在平行四邊形ABCD中,BF平分∠ABC交AD于點(diǎn)F,AE⊥BF于點(diǎn)O,交BC于點(diǎn)E,連接EF.
(1)求證:四邊形ABEF是菱形;
(2)若AE=12,BF=16,CE=5,求四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,AC,BD相交于點(diǎn)O,AC=6,BD=8,∠AOD=65°,點(diǎn)E在BO上,AF∥CE交BD于點(diǎn)F.
(1)求證:四邊形AFCE是平行四邊形.
(2)當(dāng)點(diǎn)E在邊BO上移動(dòng)時(shí),平行四邊形AFCE能否為矩形?若能,此時(shí)BE的長為多少(直接寫出結(jié)果)?若不能,請(qǐng)說明理由.
(3)當(dāng)點(diǎn)E在邊BO上移動(dòng)時(shí),平行四邊形AFCE能否為菱形?若能,此時(shí)BE的長為多少(直接寫出結(jié)果)?若不能,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是圓O的弦,OA⊥OD,AB,OD相交于點(diǎn)C,且CD=BD.
(1)判斷BD與圓O的位置關(guān)系,并證明你的結(jié)論;
(2)當(dāng)OA=3,OC=1時(shí),求線段BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在⊙O中,AB為直徑,C為⊙O上一點(diǎn).
(1)如圖1,過點(diǎn)C作⊙O的切線,與AB的延長線相交于點(diǎn)P,若∠CAB=27°,求∠P的大。
(2)如圖2,D為上一點(diǎn),且OD經(jīng)過AC的中點(diǎn)E,連接DC并延長,與AB的延長線相交于點(diǎn)P,若∠CAB=10°,求∠P的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:關(guān)于x的二次函數(shù)的圖象與x軸交于點(diǎn)A(1,0)和點(diǎn)B,與y軸交于點(diǎn)C(0,3),拋物線的對(duì)稱軸與x軸交于點(diǎn)D.
(1)求二次函數(shù)的表達(dá)式;
(2)在y軸上是否存在一點(diǎn)P,使△PBC為等腰三角形.若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);
(3)有一個(gè)點(diǎn)M從點(diǎn)A出發(fā),以每秒1個(gè)單位的速度在AB上向點(diǎn)B運(yùn)動(dòng),另一個(gè)點(diǎn)N從點(diǎn)D與點(diǎn)M同時(shí)出發(fā),以每秒2個(gè)單位的速度在拋物線的對(duì)稱軸上運(yùn)動(dòng),當(dāng)點(diǎn)M到 達(dá)點(diǎn)B時(shí),點(diǎn)M、N同時(shí)停止運(yùn)動(dòng),問點(diǎn)M、N運(yùn)動(dòng)到何處時(shí),△MNB面積最大,試求出最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】過矩形ABCD的對(duì)角線AC的中點(diǎn)O作EF⊥AC,交BC邊于點(diǎn)E,交AD邊于點(diǎn)F,分別連接AE,CF.
(1)求證:四邊形AECF是菱形;
(2)若AB=6,AC=10,EC=,求EF的長.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com