【題目】小李在學(xué)習(xí)了定理“直角三角形斜邊上的中線(xiàn)等于斜邊的一半”之后做了如下思考,請(qǐng)你幫他完成如下問(wèn)題:

1)他認(rèn)為該定理有逆定理:“如果一個(gè)三角形某條邊上的中線(xiàn)等于該邊長(zhǎng)的一半,那么這個(gè)三角形是直角三角形”應(yīng)該成立.即如圖①,在中,邊上的中線(xiàn),若,求證:.

2)如圖②,已知矩形,如果在矩形外存在一點(diǎn),使得,求證:.(可以直接用第(1)問(wèn)的結(jié)論)

3)在第(2)問(wèn)的條件下,如果恰好是等邊三角形,請(qǐng)求出此時(shí)矩形的兩條鄰邊的數(shù)量關(guān)系.

【答案】1)詳見(jiàn)解析;(2)詳見(jiàn)解析;(3

【解析】

1)利用等腰三角形的性質(zhì)和三角形內(nèi)角和即可得出結(jié)論;
2)先判斷出OE=AC,即可得出OE=BD,即可得出結(jié)論;
3)先判斷出ABE是底角是30°的等腰三角形,即可構(gòu)造直角三角形即可得出結(jié)論.

(1)∵AD=BD,
∴∠B=∠BAD,
∵AD=CD,
∴∠C=∠CAD,
在△ABC中,∠B+∠C+∠BAC=180°,
∴∠B+∠C+∠BAD+∠CAD=∠B+∠C+∠B+∠C=180°
∴∠B+∠C=90°,
∴∠BAC=90°,

2)如圖②,連接,交點(diǎn)為,連接

四邊形是矩形

3)如圖3,過(guò)點(diǎn)于點(diǎn)

四邊形是矩形

,

是等邊三角形

由(2)知,

中,

,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,OAO的半徑,點(diǎn)E為圓內(nèi)一點(diǎn),且OAOE,ABO的切線(xiàn),EBO于點(diǎn)FBQAF于點(diǎn)Q

(1)如圖1,求證:OEAB;

(2)如圖2,若ABAO,求的值;

(3)如圖3,連接OF,∠EOF的平分線(xiàn)交射線(xiàn)AF于點(diǎn)P,若OA2,cosPAB,求OP的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,中,,以為直徑的于點(diǎn),交于點(diǎn),過(guò)點(diǎn)于點(diǎn),交的延長(zhǎng)線(xiàn)于點(diǎn).

(1)求證:的切線(xiàn);

(2)已知,求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)某一個(gè)函數(shù)給出如下定義:若存在實(shí)數(shù),對(duì)于函數(shù)圖象上橫坐標(biāo)之差為1的任意兩點(diǎn),都成立,則稱(chēng)這個(gè)函數(shù)是限減函數(shù),在所有滿(mǎn)足條件的中,其最大值稱(chēng)為這個(gè)函數(shù)的限減系數(shù).例如,函數(shù),當(dāng)取值時(shí),函數(shù)值分別為,故,因此函數(shù)是限減函數(shù),它的限減系數(shù)為

(1)寫(xiě)出函數(shù)的限減系數(shù);

(2),已知)是限減函數(shù),且限減系數(shù),求的取值范圍

(3)已知函數(shù)的圖象上一點(diǎn),過(guò)點(diǎn)作直線(xiàn)垂直于軸,將函數(shù)的圖象在點(diǎn)右側(cè)的部分關(guān)于直線(xiàn)翻折,其余部分保持不變得到一個(gè)新函數(shù)的圖象,如果這個(gè)新函數(shù)是限減函數(shù),且限減系數(shù),直接寫(xiě)出點(diǎn)橫坐標(biāo)的取值范圍

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(Ⅰ)如圖1,在菱形中,已知,,拋物線(xiàn))經(jīng)過(guò),,三點(diǎn).

1)點(diǎn)的坐標(biāo)為__________,點(diǎn)的坐標(biāo)為__________;

2)求拋物線(xiàn)的解析式.

(Ⅱ)如圖2,點(diǎn)的中點(diǎn),點(diǎn)的中點(diǎn),直線(xiàn)垂直于點(diǎn),點(diǎn)在直線(xiàn)上.

3)當(dāng)的值最小時(shí),則點(diǎn)的坐標(biāo)為____________

4)在(3)的條件下,連接,問(wèn)在拋物線(xiàn)上是否存在點(diǎn),使得以,,為頂點(diǎn)的三角形與相似?若存在,請(qǐng)求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知反比例函數(shù)的圖象與一次函數(shù)的圖象相交于點(diǎn)A14)和點(diǎn)Bn,).

1)求反比例函數(shù)和一次函數(shù)的解析式;

2)當(dāng)一次函數(shù)的值小于反比例函數(shù)的值時(shí),直接寫(xiě)出x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2017江西省,第12題,3分)已知點(diǎn)A(0,4),B(7,0),C(7,4),連接AC,BC得到矩形AOBC,點(diǎn)D的邊AC上,將邊OA沿OD折疊,點(diǎn)A的對(duì)應(yīng)邊為A'.若點(diǎn)A'到矩形較長(zhǎng)兩對(duì)邊的距離之比為1:3,則點(diǎn)A'的坐標(biāo)為______________________________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在正方形中,是對(duì)角線(xiàn)上的一點(diǎn),點(diǎn)的延長(zhǎng)線(xiàn)上,

1)求證:;

2)連接,若,求

3)如圖2,若把正方形改為菱形,其他條件不變,當(dāng)時(shí),猜想的數(shù)量關(guān)系,并證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,BABC,以AB為直徑的⊙O分別交AC、BC于點(diǎn)DE,BC的延長(zhǎng)線(xiàn)于⊙O的切線(xiàn)AF交于點(diǎn)F

1)求證:∠ABC2CAF

2)若AC2,CEEB14,求CE的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案