直線y=x+4與拋物線交點坐標(biāo)為______.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)有一個拋物線形的橋洞,橋洞離水面的最大高度BM為3米,跨度OA為6米,以O(shè)A所在直線為x軸,O為原點建立直角坐標(biāo)系(如圖所示).
(1)請你直接寫出O、A、M三點的坐標(biāo);
(2)一艘小船平放著一些長3米、寬2米且厚度均勻的矩形木板,要使該小船能通過此橋洞,問這些木板最高可堆放多少米(設(shè)船身底板與水面同一平面)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,宜昌西陵長江大橋?qū)儆趻佄锞形懸索橋,橋面(視為水平的)與主懸鋼索之間用垂直鋼拉索連接.橋兩端主塔塔頂?shù)暮0胃叨染?87.5米,橋的單孔跨度(即兩主塔之間的距離)900米,這里水面的海拔高度是74米.若過主塔塔頂?shù)闹鲬忆撍鳎ㄒ暈閽佄锞)最低點離橋面(視為直線)的高度為0.5米,橋面離水面的高度為19米.請你計算距離橋兩端主塔100米處垂直鋼拉索的長.(結(jié)果精確到0.1米)
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角坐標(biāo)系中,點A,B,C的坐標(biāo)分別為(-1,0),(3,0),(0,3),過A精英家教網(wǎng),B,C三點的拋物的對稱軸為直線l,D為對稱軸l上一動點.
(1)求拋物線的解析式;
(2)求當(dāng)AD+CD最小時點D的坐標(biāo);
(3)以點A為圓心,以AD為半徑作⊙A.
①證明:當(dāng)AD+CD最小時,直線BD與⊙A相切;
②寫出直線BD與⊙A相切時,D點的另一個坐標(biāo):
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,點D,E分別是矩形OABC中AB和BC邊上的中點,點B的坐標(biāo)為(6,4)
(1)寫出A,C,E,D四點的坐標(biāo);并判斷點O到直線DE的距離是否等于線段的OE長;
(2)動點F在線段DE上,F(xiàn)G⊥x軸于G,F(xiàn)H⊥y軸于H,求矩形面積最大時點F的坐標(biāo)(利用圖1解答);
(3)我們給出如下定義:分別過拋物向上的兩點(不在x軸上)作x軸的垂線,如果以這兩點及垂足為頂點的矩形在這條拋物線與x軸圍成的封閉圖形內(nèi)部,則稱這個矩形是這條拋物線的內(nèi)接矩形,請你理解上述定義,解答下面的問題:若矩形OABC是某個拋物線的周長最大的內(nèi)接矩形,求這個拋物線的解析式(利用圖2解答).
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年廣西省貴港市九年級第一次教學(xué)質(zhì)量監(jiān)測數(shù)學(xué)卷 題型:解答題

(本題滿分12分)

如圖所示,在平面直角坐標(biāo)系中,頂點為(,)的拋物線交軸于點,交軸于,兩點(點在點的左側(cè)), 已知點坐標(biāo)為(,).

 

 

 

 

 

 

 

(1)求此拋物線的解析式;

(2)過點作線段的垂線交拋物線于點

如果以點為圓心的圓與直線相切,請判斷拋物

線的對稱軸與⊙有怎樣的位置關(guān)系,并給出證明;

(3)已知點是拋物線上的一個動點,且位于

兩點之間,問:當(dāng)點運動到什么位置時,

面積最大?并求出此時點的坐標(biāo)和的最大面積.

 

查看答案和解析>>

同步練習(xí)冊答案