【題目】如圖,△ABC中,點D在BC上,點E在AB上,BD=BE,要使△ADB≌△CEB,還需添加一個條件.
(1)給出下列四個條件:①AD=CE ②AE=CD ③∠BAC=∠BCA ④∠ADB=∠CEB請你從中選出一個能使△ADB≌△CEB的條件,并給出證明;
你選出的條件是
證明:
(2)在(1)中所給出的條件中,能使△ADB≌△CEB的還有哪些?直接在題后橫線上寫出滿足題意的條件序號:
【答案】(1)詳見解析;(2)③④
【解析】
要證明△ADB≌△CEB,兩三角形中已知的條件有BD=BE,有一個公共角,那么根據(jù)三角形的判定公理和推論,我們可看出①不符合條件,沒有SSA的判定條件,因此不正確.②AE=CD,可得出AB=BC,這樣就構(gòu)成了SAS,因此可得出全等的結(jié)論.③構(gòu)成了全等三角形判定中的AAS,因此可得出三角形全等的結(jié)論.④構(gòu)成了全等三角形判定中的ASA,因此可得出三角形全等的結(jié)論.
第(1)題添加條件②,③,④中任一個即可,以添加②為例說明.
(1)②,證明:∵AE=CD,BE=BD,∴AB=CB.
又∵∠ABD=∠CBE,BE=BD,∴△ADB≌△CEB.
(2)③構(gòu)成了全等三角形判定中的AAS,因此可得出三角形全等的結(jié)論.④構(gòu)成了全等三角形判定中的ASA,因此可得出三角形全等的結(jié)論.故答案為:③④.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,方格紙中小正方形的邊長為1,△ABC的三個頂點都在小正方形的格點上,求:
(1)邊AC,AB,BC的長;
(2)點C到AB邊的距離;
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】聯(lián)想與探索:
如圖1,將線段A1A2本向右平移1個單位長度至B1B2,得到封閉圖形A1A2B2B1(即陰影部分),在圖2中,將折線A1A2A3向右平移1個單位長度至B1B2B3,得到封閉圖形A1A2A3B3B2B1(即陰影部分).
(1)在圖3中,請你類似地畫一條有兩個折點的折線,同樣向右平移1個單位長度,從而得到一個封閉圖形,并用陰影表示;
(2)請你分別寫出上述三個圖形中除去陰影部分后剩余部分的面積(設(shè)長方形水平方向長均為a,豎直方向長均為b) :S1= ,S2= ,S3= ;
(3)如圖4,在一塊長方形草地上,有一條彎曲的小路(小路任何地方的水平寬度都是2個單位長度,長方形水平方向長為a,豎直方向長為b),則空白部分表示的草地面積是多少?
(4)如圖5,若在(3)中的草地上又有一條橫向的曲小路(小路任何地方的寬度都是1個單位長度),則空白部分表示的草地面積是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知圓O1、圓O2的半徑不相等,圓O1的半徑長為3,若圓O2上的點A滿足AO1=3,則圓O1與圓O2的位置關(guān)系是( )
A.相交或相切
B.相切或相離
C.相交或內(nèi)含
D.相切或內(nèi)含
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AC=2,∠BA C=75°,∠ACB= 60°,高BE與AD相交于點H,則DH的長為
A. 2 B. 1.5 C. 1 D. 0.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,三角形ABC的三個頂點的位置如圖所示,點A'的坐標是(-2,2),現(xiàn)將三角形ABC平移,使點A變換為點A',點B',C'分別是B,C的對應(yīng)點.
(1)請畫出平移后的三角形A'B'C'(不寫畫法),并直接寫出B',C'的坐標;
(2)若三角形ABC內(nèi)部一點P的坐標為(a,b),則點P的對應(yīng)點P'的坐標是_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,D是BC的中點,AC的垂直平分線分別交AC、AD、AB于點E、O、F,則圖中全等的三角形的對數(shù)是______ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,∠ABC=3∠CBD,∠ADC=3∠CDB,∠C=130°,則∠A的度數(shù)是( )
A.60° B.70° C.80° D.90°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長分別為a,b的兩個正方形并排放在一起,請計算圖中陰影部分面積,并求出當a+b=16,ab=60時陰影部分的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com