精英家教網 > 初中數學 > 題目詳情
拋物線y=-x2-2x+3與y軸交點為   
【答案】分析:拋物線y=-x2-2x+3與y軸交點的橫坐標是0,然后將x=0代入拋物線方程求得y值即可.
解答:解:根據題意,得
x=0滿足拋物線方程y=-x2-2x+3,
∴y=3,
∴拋物線y=-x2-2x+3與y軸交點為(0,3);
故答案是:(0,3).
點評:本題考查了二次函數圖象上點的坐標特征.解答此類題目須知:該函數與x軸交點的縱坐標是0,與y軸交點的橫坐標是0.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

如圖,直線y=x-3于x軸、y軸分別交于B、C;兩點,拋物線y=x2+bx+c同時經過B、C兩點,點精英家教網A是拋物線與x軸的另一個交點.
(1)求拋物線的函數表達式;
(2)若點P在線段BC上,且S△PAC=
12
S△PAB,求點P的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

已知x1、x2是拋物線y=x2-2(m-1)x+m2-7與x軸的兩個交點的橫坐標,且x12+x22=10.
求:(1)x1、x2的值;
(2)拋物線的頂點坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網已知一元二次方程-x2+bx+c=0的兩個實數根是m,4,其中0<m<4.
(1)求b、c的值(用含m的代數式表示);
(2)設拋物線y=-x2+bx+c與x軸交于A、B兩點,與y軸交于點C.若點D的坐標為(0,-2),且AD•BD=10,求拋物線的解析式及點C的坐標;
(3)在(2)中所得的拋物線上是否存在一點P,使得PC=PD?若存在,求出P點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

16、已知拋物線y=x2+bx+c的部分圖象如圖所示,若方程x2+bx+c=0有兩個同號的實數根,則c的值可以是
2
.(寫出一個即可)

查看答案和解析>>

科目:初中數學 來源: 題型:

11、在平面直角坐標系中,將拋物線y=x2+2x+3繞著它與y軸的交點旋轉180°,所得拋物線的解析式是(  )

查看答案和解析>>

同步練習冊答案