【題目】科幻小說《實(shí)驗(yàn)室的故事》中,有這樣一個(gè)情節(jié),科學(xué)家把一種珍奇的植物分別放在不同溫度的環(huán)境中,經(jīng)過一天后,測試出這種植物高度的增長情況(如下表):
溫度 /℃ | …… | -4 | -2 | 0 | 2 | 4 | 4.5 | …… |
植物每天高度增長量 /mm | …… | 41 | 49 | 49 | 41 | 25 | 19.75 | …… |
這些數(shù)據(jù)說明:植物每天高度增長量 關(guān)于溫度 的函數(shù)是反比例函數(shù)、一次函數(shù)和二次函數(shù)中的一種.
(1)你認(rèn)為是哪一種函數(shù),并求出它的函數(shù)關(guān)系式;
(2)溫度為多少時(shí),這種植物每天高度增長量最大?
(3)如果實(shí)驗(yàn)室溫度保持不變,在10天內(nèi)要使該植物高度增長量的總和超過250mm,那么實(shí)驗(yàn)室的溫度x應(yīng)該在哪個(gè)范圍內(nèi)選擇?請直接寫出結(jié)果.
【答案】
(1)解:選擇二次函數(shù),設(shè) ,
得 ,解得
∴y關(guān)于x的函數(shù)關(guān)系式是 .
不選另外兩個(gè)函數(shù)的理由:注意到點(diǎn)(0,49)不可能在任何反比例函數(shù)圖象上,所以y不是x的反比例函數(shù);點(diǎn)(-4,41),(-2,49),(2,41)不在同一直線上,所以y不是x的一次函數(shù)
(2)解:由(1),得 ,
∴ ,
∵ ,
∴當(dāng)x=-1時(shí),y有最大值為50.
即當(dāng)溫度為-1℃時(shí),這種植物每天高度增長量最大
(3)解:
【解析】(1)根據(jù)表格得到點(diǎn)(0,49)不可能在任何反比例函數(shù)圖象上,所以y不是x的反比例函數(shù);點(diǎn)(-4,41),(-2,49),(2,41)不在同一直線上,所以y不是x的一次函數(shù);得到是二次函數(shù),把三個(gè)點(diǎn)的坐標(biāo)代入,求出y關(guān)于x的二次函數(shù)關(guān)系式;(2)由(1)的函數(shù)關(guān)系式,得到頂點(diǎn)式,求出這種植物每天高度增長量的最大值;(3)根據(jù)表格和已知在10天內(nèi)要使該植物高度增長量的總和超過250mm,得到x的取值范圍.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù) 的部分圖像如圖所示,圖像過點(diǎn) ,對稱軸為直線 ,下列結(jié)論:(1) ;(2) ;(3)若點(diǎn) 、點(diǎn) 、點(diǎn) 在該函數(shù)圖像上,則 ;(4)若方程 的兩根為 和 ,且 ,則 .其中正確結(jié)論的序號是.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】游泳是一項(xiàng)深受青少年喜愛的體育活動,學(xué)校為了加強(qiáng)學(xué)生的安全意識,組織學(xué)生觀看了紀(jì)實(shí)片“孩子,請不要私自下水”,并于觀看后在本校的2000名學(xué)生中作了抽樣調(diào)查.請根據(jù)下面兩個(gè)不完整的統(tǒng)計(jì)圖回答以下問題:
(1)這次抽樣調(diào)查中,共調(diào)查了__ __名學(xué)生;
(2)補(bǔ)全兩個(gè)統(tǒng)計(jì)圖;
(3)根據(jù)抽樣調(diào)查的結(jié)果,估算該校2000名學(xué)生中大約有多少人“一定會下河游泳”?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AD∥BC,AB=DC=AD,BD=AC,BD、AC相交于點(diǎn)O.
(1)求證:△ABO≌△DCO;
(2)寫出圖中所有與∠ACB相等的角.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是某貨站傳送貨物的平面示意圖. 為了提高傳送過程的安全性,工人師傅欲減小傳送帶與地面的夾角,使其由45°改為30°. 已知原傳送帶AB長為4米.
(1)求新傳送帶AC的長度;
(2)如果需要在貨物著地點(diǎn)C的左側(cè)留出2米的通道,試判斷距離B點(diǎn)4米的貨物 是否需要挪走,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖在平行四邊形ABCD中,BC=2AB,CE⊥AB于E,F(xiàn)為AD的中點(diǎn),若∠AEF=54,則∠B=( )
A. 54 B. 60 C. 72 D. 66
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(8分)如圖,在ABCD中,∠BCD=120°,分別延長DC、BC到點(diǎn)E,F(xiàn),使得△BCE和△CDF都是正三角形.
(1)求證:AE=AF;
(2)求∠EAF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC中,∠A=60°,∠ACB=40°,D為BC邊延長線上一點(diǎn),BM平分∠ABC,E為射線BM上一點(diǎn).若直線CE垂直于△ABC的一邊,則∠BEC=____°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,小明在自家樓頂上的點(diǎn)A處測量建在與小明家樓房同一水平線上鄰居的電梯的高度,測得電梯樓頂部B處的仰角為45°,底部C處的俯角為26°,已知小明家樓房的高度AD=15米,求電梯樓的高度BC(結(jié)果精確到0.1米)(參考數(shù)據(jù):sin26°≈0.44,cos26°≈0.90,tan26°≈0.49)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com