如圖,已知數(shù)學(xué)公式,求作數(shù)學(xué)公式的中點M,找出數(shù)學(xué)公式所在圓的圓心.

解:連接AB,
作AB的垂直平分線CD,CD與的交點即是中點M,
再連接AM,作AM的垂直平分線EF,EF與CD的交點即是圓心.
分析:根據(jù)垂直平分線的作法,分別作出AB,AM的垂直平分線即可得出答案.
點評:此題主要考查了垂直平分線的作法以及其性質(zhì),熟練應(yīng)用垂直平分線的性質(zhì)是解決問題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知直角梯形OABC的邊OA在y軸的正半軸上,OC在x軸的正半軸上,OA=AB=2,OC=3,過點B作BD⊥BC,交OA于點D.將∠DBC繞點B按順時針方向旋轉(zhuǎn),角的兩邊分別交y軸的正半軸、x軸的正半軸于E和F.
(1)求經(jīng)過A、B、C三點的拋物線的解析式;
(2)當(dāng)BE經(jīng)過(1)中拋物線的頂點時,求CF的長;
(3)連接EF,設(shè)△BEF與△BFC的面積之差為S,問:當(dāng)CF為何值時S最小,并求出這個最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知平面直角坐標(biāo)系xOy中,點A(2,m),B(-3,n)為兩動點,其中m>1,連接O精英家教網(wǎng)A,OB,OA⊥OB,作BC⊥x軸于C點,AD⊥x軸于D點.
(1)求證:mn=6;
(2)當(dāng)S△AOB=10時,拋物線經(jīng)過A,B兩點且以y軸為對稱軸,求拋物線對應(yīng)的二次函數(shù)的關(guān)系式;
(3)在(2)的條件下,設(shè)直線AB交y軸于點F,過點F作直線l交拋物線于P,Q兩點,問是否存在直線l,使S△POF:S△QOF=1:2?若存在,求出直線l對應(yīng)的函數(shù)關(guān)系式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知在平面直角坐標(biāo)系中,直角梯形ABCD,AB∥CD,AD=CD,∠ABC=90°,A、B在x軸上,點D在y軸上,若tan∠OAD=
4
3
,B點的坐標(biāo)為(5,0).
(1)求直線AC的解析式;
(2)若點Q、P分別從點C、A同時出發(fā),點Q沿線段CA向點A運動,點P沿線段AB向點B運動,Q點的速度為每秒
5
個單位長度,P點的速度為每秒2個單位長度,設(shè)運動時間為t秒,△PQE的面積為S,求S與t的函數(shù)關(guān)系式(請直接寫出自變量t的取值范圍);
(3)在(2)的條件下,過P點作PQ的垂線交直線CD于點M,在P、Q運動的過程中,是否在平面內(nèi)有一點N,使四邊形QPMN為正方形?若存在,求出N點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知AC是⊙O的直徑,MA,MB分別切⊙O于點A,B.
(1)如圖1,若∠BAC=25°,求∠AMB的大。
(2)如圖2,過點B作BD⊥AC,交AC于點E,交⊙O于點D,連接AD,若BD=AM=2
3

①求∠AMB的大;
②圖中陰影部分的面積為
4
3
π-
3
4
3
π-
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知在平行四邊形ABCD中,點E、F分別在邊AB、CD上,且AE=2EB,CF=2FD,連接EF.
(1)寫出與
FC
相等的向量
AE
AE

(2)填空
AD
+
EB
-
EF
=
AE
FC
AE
FC
;
(3)求作:
AD
-
FE
.(保留作圖痕跡,不要求寫作法,請說明哪個向量是所求作的向量)

查看答案和解析>>

同步練習(xí)冊答案