已知:如圖,O正方形ABCD的中心,BE平分∠DBC,交DC于點(diǎn)E,延長(zhǎng)BC到點(diǎn)F ,使CF=CE,連結(jié)DF,交BE的延長(zhǎng)線于點(diǎn)G,連結(jié)OG.
⑴ 求證:△BCE≌△DCF;
⑵ OG與BF有什么數(shù)量關(guān)系?證明你的結(jié)論;
⑶ 若GE·GB=4-2,求 正方形ABCD的面積.
(1)證明:∵BC=DC,∠BCE=∠DCF=90°,CE=CF,
∴△BCE≌△DCF.
(2)解:OG=BF.
理由如下:∵△BCE≌△DCF,
∴∠CEB=∠F,
∵∠CEB=∠DEG,
∴∠F=∠DEG,
∵∠F+∠GDE=90°,
∴∠DEG+∠GDE=90°,
∴BG⊥DF,
∴∠BGD=∠BGF,
又∵BG=BG,∠DBG=∠FBG,
∴△BGD≌△BGF,
∴DG=GF,
∵O正方形ABCD的中心,
∴DO=OB,
∴OG是△DBF的中位線,
∴OG=BF.
(3)解:設(shè)BC=x,則DC=x,BD=x,
由(2)知,△BGF≌△BGD,
∴BF=BD,
∴CF=(-1)x,
∵∠DGB=∠EGD,∠DBG=∠EDG,
∴△GDB∽△GED,
∴,
∴GD2=GE•GB=4-2,
∵DC2+CF2=(2GD)2,
∴x2+(-1)2x2=4(4-2)2,
(4-2)x2=4(4-2),
x2=4,
正方形ABCD的面積是4個(gè)平方單位.
解析
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
32 |
x |
OG+GF |
DF |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
13 | 48 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com