【題目】海靜中學(xué)開展以“我最喜愛的職業(yè)”為主題的調(diào)查活動(dòng),圍繞“在演員、教師、醫(yī)生、律師、公務(wù)員共五類職業(yè)中,你最喜愛哪一類?(必選且只選一類)”的問題,在全校范圍內(nèi)隨機(jī)抽取部分學(xué)生進(jìn)行問卷調(diào)查,將調(diào)查結(jié)果整理后繪制成如圖所示的不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)圖中提供的信息回答下列問題:
(1)本次調(diào)查共抽取了多少名學(xué)生?
(2)求在被調(diào)查的學(xué)生中,最喜愛教師職業(yè)的人數(shù),并補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若海靜中學(xué)共有1500名學(xué)生,請(qǐng)你估計(jì)該中學(xué)最喜愛律師職業(yè)的學(xué)生有多少名?
【答案】(1)60;(2)9,圖形見解析;(3)150.
【解析】
試題分析:(1)用演員人數(shù)除以演員所占百分比可得到共抽取了學(xué)生總數(shù);(2)用總數(shù)減去其他的人數(shù)可得出教師職業(yè)的人數(shù),再補(bǔ)全統(tǒng)計(jì)圖;(3)利用調(diào)查學(xué)生中最喜愛律師職業(yè)的學(xué)生百分比可求出該中學(xué)中的相應(yīng)人數(shù).
試題解析:(1)12÷20%=60,答:共調(diào)查了60名學(xué)生.(2)60﹣12﹣9﹣6﹣24=9,答:最喜愛的教師職業(yè)人數(shù)為9人.如圖所示:
(3)(名)答:該中學(xué)最喜愛律師職業(yè)的學(xué)生有150名.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AD是△ABC的高線,BD=CD,點(diǎn)E是AD上一點(diǎn),BE=BC,將△ABE沿BE所在直線折疊,點(diǎn)A落在點(diǎn)A′位置上,連接AA',BA′,EA′與AC相交于點(diǎn)H,BA′與AC相交于點(diǎn)F.小夏依據(jù)上述條件,寫出下列四個(gè)結(jié)論:①∠EBC=60°;②∠BFC=60°;③∠EA′A=60°;④∠A′HA=60°.以上結(jié)論中,正確的是( )
A.①B.③④C.①②③D.①②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC各頂點(diǎn)的坐標(biāo)分別為A(-3,2),B(-4,-3),C(-1,-1)
(1)畫出△ABC,并畫出△ABC關(guān)于y軸對(duì)稱的△A1B1C1,并寫出A的對(duì)應(yīng)點(diǎn)A1的坐標(biāo).
(2)尺規(guī)作圖,∠A的角平分線AD,交BC于點(diǎn)D(保留作圖痕跡,不寫作法).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別是A(1,1),B(4,1),C(3,3).
(1)將△ABC向下平移5個(gè)單位后得到△A1B1C1,請(qǐng)畫出△A1B1C1;
(2)將△ABC繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后得到△A2B2C2,請(qǐng)畫出△A2B2C2;
(3)判斷以O,A1,B為頂點(diǎn)的三角形的形狀.(無(wú)須說(shuō)明理由)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:二次函數(shù)圖象的頂點(diǎn)坐標(biāo)是(3,5),且拋物線經(jīng)過(guò)點(diǎn)A(1,3).
(1)求此拋物線的表達(dá)式;
(2)如果點(diǎn)A關(guān)于該拋物線對(duì)稱軸的對(duì)稱點(diǎn)是B點(diǎn),且拋物線與y軸的交點(diǎn)是C點(diǎn),求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“揚(yáng)州漆器”名揚(yáng)天下,某網(wǎng)店專門銷售某種品牌的漆器筆筒,成本為30元/件,每天銷售量(件)與銷售單價(jià)(元)之間存在一次函數(shù)關(guān)系,如圖所示.
(1)求與之間的函數(shù)關(guān)系式;
(2)如果規(guī)定每天漆器筆筒的銷售量不低于240件,當(dāng)銷售單價(jià)為多少元時(shí),每天獲取的利潤(rùn)最大,最大利潤(rùn)是多少?
(3)該網(wǎng)店店主熱心公益事業(yè),決定從每天的銷售利潤(rùn)中捐出150元給希望工程,為了保證捐款后每天剩余利潤(rùn)不低于3600元,試確定該漆器筆筒銷售單價(jià)的范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四 邊形OABC是矩形,點(diǎn)A、C在坐標(biāo)軸上,△ODE是由△OCB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到的,點(diǎn)D在X軸上,直線BD交Y軸于點(diǎn)F,交OE于點(diǎn)H,線段BC、OC的長(zhǎng)是方程x2-6x+8=0的兩個(gè)根,且OC>BC.
(1)求直線BD的解析式.
(2)求 △OFH的面積.
(3)點(diǎn)M在坐標(biāo)軸上,平面內(nèi)是否存在點(diǎn)N,使以點(diǎn)D、F、M、N為頂點(diǎn)的四邊形是矩形?若存在,請(qǐng)直接寫出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】A、B兩輛汽車同時(shí)從相距330千米的甲、乙兩地相向而行,s(千米)表示汽車與甲地的距離,t(分)表示汽車行駛的時(shí)間,如圖,L1,L2分別表示兩輛汽車的s與t的關(guān)系.
(1)L1表示哪輛汽車到甲地的距離與行駛時(shí)間的關(guān)系?
(2)汽車B的速度是多少?
(3)求L1,L2分別表示的兩輛汽車的s與t的關(guān)系式.
(4)2小時(shí)后,兩車相距多少千米?
(5)行駛多長(zhǎng)時(shí)間后,A、B兩車相遇?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們知道,假分?jǐn)?shù)可以化為整數(shù)與真分?jǐn)?shù)的和的形式,例如:.
在分式中,對(duì)于只含有一個(gè)字母的分式,當(dāng)分子的次數(shù)大于或等于分母的次數(shù)時(shí),我們稱之為“假分式”;當(dāng)分子的次數(shù)小于分母的次數(shù)時(shí),我們稱之為“真分式”.
例如:像,,…這樣的分式是假分式;像,,…這樣的分式是真分式.
類似的,假分式也可以化為整式與真分式的和(差)的形式.
例如:將分式拆分成一個(gè)整式與一個(gè)真分式的和(差)的形式.
方法一:解:由分母為,可設(shè)
則由
對(duì)于任意,上述等式均成立,
∴,解得
∴
這樣,分式就被拆分成一個(gè)整式與一個(gè)真分式的和(差)的形式.
方法二:解:
這樣,分式就拆分成一個(gè)整式與一個(gè)真分式的和(差)的形式.
(1)請(qǐng)仿照上面的方法,選擇其中一種方法將分式拆分成一個(gè)整式與一個(gè)真分式的和(差)的形式;
(2)已知整數(shù)使分式的值為整數(shù),求出滿足條件的所有整數(shù)的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com