【題目】在直角△ABC中,∠C=90°,∠A、∠B與∠C的對邊分別是a、b和c,那么下列關(guān)系中,正確的是(
A.cosA=
B.tanA=
C.sinA=
D.cosA=

【答案】C
【解析】解:在直角△ABC中,∠C=90°,則 A、cosA= ,故本選項(xiàng)錯誤;
B、tanA= ,故本選項(xiàng)錯誤;
C、sinA= ,故本選項(xiàng)正確;
D、cosA= ,故本選項(xiàng)錯誤;
故選:C.

根據(jù)三角函數(shù)定義:(1)正弦:我們把銳角A的對邊a與斜邊c的比叫做∠A的正弦,記作sinA.(2)余弦:銳角A的鄰邊b與斜邊c的比叫做∠A的余弦,記作cosA.(3)正切:銳角A的對邊a與鄰邊b的比叫做∠A的正切,記作tanA.分別進(jìn)行分析即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,M是邊AC的中點(diǎn),CH⊥BM于H.

(1)試求sin∠MCH的值;
(2)問△MCH與△MBC是否相似?請說明理由;
(3)連結(jié)AH,求證:∠AHM=45°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知EC∥AB,∠EDA=∠ABF.
(1)求證:四邊形ABCD是平行四邊形;
(2)求證:OA2=OEOF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖的⊙O中,AB為直徑,OC⊥AB,弦CD與OB交于點(diǎn)F,過點(diǎn)D、A分別作⊙O的切線交于點(diǎn)G,并與AB延長線交于點(diǎn)E.
(1)求證:∠1=∠2.
(2)已知:OF:OB=1:3,⊙O的半徑為3,求AG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】第一次模擬試后,數(shù)學(xué)科陳老師把一班的數(shù)學(xué)成績制成如圖的統(tǒng)計圖,并給了幾個信息:①前兩組的頻率和是0.14;②第一組的頻率是0.02;③自左到右第二、三、四組的頻數(shù)比為3:9:8,然后布置學(xué)生(也請你一起)結(jié)合統(tǒng)計圖完成下列問題:
(1)全班學(xué)生是多少人?
(2)成績不少于90分為優(yōu)秀,那么全班成績的優(yōu)秀率是多少?
(3)若不少于100分可以得到A+等級,則小明得到A+的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=﹣2x2+bx+c的圖象經(jīng)過點(diǎn)A(0,4)和B(1,﹣2).
(1)求此函數(shù)的解析式;并運(yùn)用配方法,將此拋物線解析式化為y=a(x+m)2+k的形式;
(2)寫出該拋物線頂點(diǎn)C的坐標(biāo),并求出△CAO的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小明晚上由路燈A下的點(diǎn)B處走到點(diǎn)C處時,測得自身影子CD的長為1米,他繼續(xù)往前走3米到達(dá)點(diǎn)E處(即CE=3米),測得自己影子EF的長為2米,已知小明的身高是1.5米,那么路燈A的高度AB是(
A.4.5米
B.6米
C.7.2米
D.8米

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BD為⊙O的直徑,AB=AC,AD交BC于點(diǎn)E,AE=1,ED=2.
(1)求證:∠ABC=∠D;
(2)求AB的長;
(3)延長DB到F,使得BF=BO,連接FA,試判斷直線FA與⊙O的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一輛慢車從甲地勻速行駛至乙地,一輛快車同時從乙地出發(fā)勻速行駛至甲地,兩車之間的距離y(千米)與行駛時間x(小時)的對應(yīng)關(guān)系如圖所示:
(1)甲乙兩地相距多遠(yuǎn)?
(2)求快車和慢車的速度分別是多少?
(3)求出兩車相遇后y與x之間的函數(shù)關(guān)系式;
(4)何時兩車相距300千米.

查看答案和解析>>

同步練習(xí)冊答案