如圖,△ABC內(nèi)接于⊙O,EC切⊙O于點(diǎn)C,若∠BOC=76°,則∠BCE的度數(shù)是( )

A.14°
B.38°
C.52°
D.76°
【答案】分析:由于CE是切線,可得∠BCE=∠A,而∠BOC=76°,易求∠A,進(jìn)而可求∠BCE.
解答:解:∵CE是切線,
∴∠BCE=∠A,
∵∠BOC=76°,
∴∠A=∠BOC=38°,
∴∠BCE=38°.
故選B.
點(diǎn)評(píng):本題考查了圓周角定理、切線的性質(zhì)、弦切角定理,解題的關(guān)鍵是求出∠A.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

15、如圖,△ABC內(nèi)接于⊙O,∠BAC=120°,AB=AC=4.BD為⊙O的直徑,則BD=
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

21、如圖,△ABC內(nèi)接于⊙O,AB為⊙O的直徑,點(diǎn)D在AB的延長線上,∠A=∠D=30°.
(1)判斷DC是否為⊙O的切線,并說明理由;
(2)證明:△AOC≌△DBC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,△ABC內(nèi)接于⊙O,連接AO并延長交BC于點(diǎn)D,若AO=5,BC=8,∠ADB=90°,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

18、如圖,△ABC內(nèi)接于⊙O,∠A=30°,若BC=4cm,則⊙O的直徑為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC內(nèi)接于⊙O,AD⊥BC于點(diǎn)D,求證:∠BAD=∠CAO.

查看答案和解析>>

同步練習(xí)冊(cè)答案