【題目】如圖,點D在⊙O的直徑AB的延長線上,點C在⊙O上,AC=CD,∠ACD=120°.
(1)求證:CD是⊙O的切線;
(2)若⊙O的半徑為2,求圖中陰影部分的面積.
【答案】(1)證明見解析;(2)2.
【解析】
試題分析:(1)連接OC.只需證明∠OCD=90°.根據(jù)等腰三角形的性質(zhì)即可證明;
(2)陰影部分的面積即為直角三角形OCD的面積減去扇形COB的面積.
試題解析:(1)連接OC.
∵AC=CD,∠ACD=120°,
∴∠A=∠D=30°.
∵OA=OC,
∴∠2=∠A=30°.
∴∠OCD=180°-∠A-∠D-∠2=90°.即OC⊥CD,
∴CD是⊙O的切線
(2)∵∠A=30°,
∴∠1=2∠A=60°.
∴S扇形BOC=.
在Rt△OCD中,
∵=tan60°,
∴CD=2.
∴SRt△OCD=OC×CD=×2×2=2.
∴圖中陰影部分的面積為:2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:把Rt△ABC和Rt△DEF按如圖甲擺放(點C與點E重合),點B、C(E)、F在同一條直線上.∠BAC=∠DEF=90°,∠ABC=45°,BC=9cm,DE=6cm,EF=8cm.如圖乙,△DEF從圖甲的位置出發(fā),以1cm/s的速度沿CB向△ABC勻速移動,在△DEF移動的同時,點P從△DEF的頂點F出發(fā),以3cm/s的速度沿FD向點D勻速移動.當(dāng)點P移動到點D時,P點停止移動,△DEF也隨之停止移動.DE與AC相交于點Q,連接BQ、PQ,設(shè)移動時間為t(s).解答下列問題:
(1)設(shè)三角形BQE的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式,并寫出自變量t的取值范圍;
(2)當(dāng)t為何值時,三角形DPQ為等腰三角形?
(3)是否存在某一時刻t,使P、Q、B三點在同一條直線上?若存在,求出此時t的值;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若正比例函數(shù)y=(2-m)x的函數(shù)值y隨x的增大而減小,則m的取值范圍是( )
A. m<0 B. m>0 C. m<2 D. m>2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=2(x﹣3)2+1的頂點坐標(biāo)是( )
A.(3,1) B.(4,﹣1)
C.(﹣3,1) D.(﹣3,﹣1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,在下列五個結(jié)論中:①2a﹣b<0;②abc<0;③a+b+c<0;④a﹣b+c>0;⑤4a+2b+c>0,錯誤的個數(shù)有( )
A.1個 B.2個 C.3個 D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△OAB中,OA=OB = 10,∠AOB = 80°,以點O為圓心, 6為半徑的優(yōu)弧MN分別交OA,OB于點M,N.
(1)點P在右半弧上(∠BOP是銳角),將OP繞點O逆時針旋轉(zhuǎn)80°得OP′.求證:AP=BP′;
(2)點T在左半弧上,若AT與弧相切,求點T到OA的距離;
(3)設(shè)點Q在優(yōu)弧MN上,當(dāng)△AOQ的面積最大時,直接寫出∠BOQ的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場在銷售中發(fā)現(xiàn):某名牌襯衣平均每天可售出20件,每件襯衣盈利40元.為了迎接元旦節(jié),擴(kuò)大銷售量,減少庫存,商場決定采取適當(dāng)?shù)慕祪r措施,經(jīng)市場調(diào)查發(fā)現(xiàn),如果每件襯衣降價1元,商場平均每天可多售出2件.要想平均每天盈利1200元,每件襯衣應(yīng)降價多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com