【題目】我區(qū)積極開展“體育大課間”活動,引導(dǎo)學(xué)生堅持體育鍛煉,某校根據(jù)實際情況,決定主要開設(shè)A:乒乓球,B:籃球,C:跑步.D:足球四種運動項目.為了解學(xué)生最喜歡哪一種項目,隨機抽取了部分學(xué)生進行調(diào)査,并將調(diào)查結(jié)果繪制成如下統(tǒng)計圖.請你結(jié)合圖中信息解答下列問題:
(1)求樣本中最喜歡B項目的人數(shù)百分比和其所在扇形圖中的圓心角的度數(shù);
(2)請把條形統(tǒng)計圖補充完整;
(3)己知該校有2000人,請根據(jù)樣本估計全校最喜歡足球的人數(shù)是多少?
【答案】(1)20%,72°;(2)補圖見解析;(3)560人.
【解析】
試題分析:(1)用整體1減去A,C、D所占的百分比,即可求出B所占的百分比,再用B所占的百分比乘以360°即可得出答案;
(2)根據(jù)C所占的百分比與所給的人數(shù),求出總?cè)藬?shù),再用總?cè)藬?shù)乘以B所占的百分比,從而補全圖形;
(3)根據(jù)D所占的百分比乘以總?cè)藬?shù)即可得出全校最喜歡足球的人數(shù).
試題解析:(1)樣本中最喜歡B項目的人數(shù)百分比是1-44%-28%-8%=20%,
其所在扇形圖中的圓心角的度數(shù)是20%×360°=72°;
(2)總?cè)藬?shù)是8÷8%=100(人),
B的人數(shù)是:100×20%=20(人),
如圖:
;
(3)根據(jù)題意得:
2000×28%=560(人),
答:全校最喜歡足球的人數(shù)是560人.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(閱讀理解)
點A、B、C為數(shù)軸上三點,如果點C在A、B之間且到A的距離是點C到B的距離3倍,那么我們就稱點C是{A,B}的奇點.
例如,如圖1,點A表示的數(shù)為﹣3,點B表示的數(shù)為1.表示0的點C到點A的距離是3,到點B的距離是1,那么點C是{A,B}的奇點;又如,表示﹣2的點D到點A的距離是1,到點B的距離是3,那么點D就不是{A,B}的奇點,但點D是{B,A}的奇點.
(知識運用)
如圖2,M、N為數(shù)軸上兩點,點M所表示的數(shù)為﹣3,點N所表示的數(shù)為5.
(1)數(shù) 所表示的點是{M,N}的奇點;數(shù) 所表示的點是{N,M}的奇點;
(2)如圖3,A、B為數(shù)軸上兩點,點A所表示的數(shù)為﹣50,點B所表示的數(shù)為30.現(xiàn)有一動點P從點B出發(fā)向左運動,當P點運動到數(shù)軸上的什么位置時,P、A和B中恰有一個點為其余兩點的奇點?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC的頂點坐標分別為A(-2,1),B(-3,-2),C(1,-2).把△ABC向上平移4個單位長度,再向右平移3個單位長度,得到△A′B′C′.
(1)在圖中畫出△A′B′C′,并寫出點A′,B′,C′的坐標;
(2)連接A′C和A′A,求三角形AA′C的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:
在數(shù)學(xué)課上,老師請同學(xué)思考如下問題:如圖1,我們把一個四邊形ABCD的四邊中點E,F(xiàn),G,H依次連接起來得到的四邊形EFGH是平行四邊形嗎?
小敏在思考問題時,有如下思路:連接AC.
結(jié)合小敏的思路作答:
(1)若只改變圖1中四邊形ABCD的形狀(如圖2),則四邊形EFGH還是平行四邊形嗎?說明理由,參考小敏思考問題的方法解決一下問題;
(2)如圖2,在(1)的條件下,若連接AC,BD.
①當AC與BD滿足什么條件時,四邊形EFGH是菱形,寫出結(jié)論并證明;
②當AC與BD滿足什么條件時,四邊形EFGH是矩形,直接寫出結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知等腰直角△ABC中,∠BAC=90°,AD⊥BC于點D,AB=5,點E是邊AB上的動點(不與A,B點重合),連接DE,過點D作DF⊥DE交AC于點F,連接EF,點H在線段AD上,且DH=AD,連接EH,HF,記圖中陰影部分的面積為S1,△EHF的面積記為S2,則S2的取值范圍是_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD是BC邊上的中線,E是AD的中點,過點A作BC的平行線交BE的延長線于點F,連接CF.
(1)求證:AF=DC ;
(2)若∠BAC=,試判斷四邊形ADCF的形狀,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠DAC=90°,△ABC是等邊三角形,點P為射線AD上任意一點(點P與點A不重合),連結(jié)CP,將線段CP繞點C順時針旋轉(zhuǎn)60°得到線段CQ,連結(jié)QB并延長交直線AD于點E.
(1)如圖,求∠QEP的度數(shù);
(2)如圖,若∠DAC=135°,∠ACP=15°,且AC=4,求BQ的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)軸上點對應(yīng)的數(shù)分別是、,為數(shù)軸上兩個動點,它們同時向右運動.點從點出發(fā),速度為每秒個單位長度;點從點出發(fā),速度為點的倍,點為原點.
(1)當運動秒時,點對應(yīng)的數(shù)分別是 、 .
(2)求運動多少秒時,點中恰有一個點為另外兩個點所連線段的中點?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某防洪指揮部發(fā)現(xiàn)長江邊一處長500米,高10米,背水坡的坡角為45°的防洪大堤(橫斷面為梯形ABCD)急需加固.經(jīng)調(diào)查論證,防洪指揮部專家組制定的加固方案是:背水坡面用土石進行加固,并使上底加寬3米,加固后背水坡EF的坡比i=1:.
(1)求加固后壩底增加的寬度AF;
(2)求完成這項工程需要土石多少立方米?(結(jié)果保留根號)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com