【題目】如圖,點(diǎn)P在等邊△ABC的內(nèi)部,且PC=6,PA=8,PB=10,將線段PC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60°得到P'C,連接AP',則sin∠PAP'的值為 .
【答案】
【解析】解:連接PP′,如圖, ∵線段PC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60°得到P'C,
∴CP=CP′=6,∠PCP′=60°,
∴△CPP′為等邊三角形,
∴PP′=PC=6,
∵△ABC為等邊三角形,
∴CB=CA,∠ACB=60°,
∴∠PCB=∠P′CA,
在△PCB和△P′CA中
,
∴△PCB≌△P′CA,
∴PB=P′A=10,
∵62+82=102 ,
∴PP′2+AP2=P′A2 ,
∴△APP′為直角三角形,∠APP′=90°,
∴sin∠PAP′= = = .
所以答案是 .
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解等邊三角形的性質(zhì)的相關(guān)知識(shí),掌握等邊三角形的三個(gè)角都相等并且每個(gè)角都是60°,以及對(duì)解直角三角形的理解,了解解直角三角形的依據(jù):①邊的關(guān)系a2+b2=c2;②角的關(guān)系:A+B=90°;③邊角關(guān)系:三角函數(shù)的定義.(注意:盡量避免使用中間數(shù)據(jù)和除法).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校在基地參加社會(huì)實(shí)踐話動(dòng)中,帶隊(duì)老師考問(wèn)學(xué)生:基地計(jì)劃新建一個(gè)矩形的生物園地,一邊靠舊墻(墻足夠長(zhǎng)),另外三邊用總長(zhǎng)69米的不銹鋼柵欄圍成,與墻平行的一邊留一個(gè)寬為3米的出入口,如圖所示,如何設(shè)計(jì)才能使園地的面積最大?下面是兩位學(xué)生爭(zhēng)議的情境:
請(qǐng)根據(jù)上面的信息,解決問(wèn)題:
(1)設(shè)AB=x米(x>0),試用含x的代數(shù)式表示BC的長(zhǎng);
(2)請(qǐng)你判斷誰(shuí)的說(shuō)法正確,為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知,拋物線l1:y=ax2﹣4ax+5+4a(a<0)的頂點(diǎn)為A,直線l2:y=kx+3過(guò)點(diǎn)A,直線l2與拋物線l1及y軸分別交于B,C.
(1)求k的值;
(2)若B為AC的中點(diǎn),求a的值;
(3)在(2)的條件下,直接寫出不等式ax2﹣4ax+5+4a<kx+3的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知正七邊形ABCDEFG,請(qǐng)僅用無(wú)刻度的直尺,分別按下列要求畫圖.
(1)在圖1中,畫出一個(gè)以AB為邊的平行四邊形;
(2)在圖2中,畫出一個(gè)以AF為邊的菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們定義:如圖1,在△ABC看,把AB點(diǎn)繞點(diǎn)A順時(shí)針旋轉(zhuǎn)α(0°<α<180°)得到AB',把AC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)β得到AC',連接B'C'.當(dāng)α+β=180°時(shí),我們稱△A'B'C'是△ABC的“旋補(bǔ)三角形”,△AB'C'邊B'C'上的中線AD叫做△ABC的“旋補(bǔ)中線”,點(diǎn)A叫做“旋補(bǔ)中心”.
(1)在圖2,圖3中,△AB'C'是△ABC的“旋補(bǔ)三角形”,AD是△ABC的“旋補(bǔ)中線”.①如圖2,當(dāng)△ABC為等邊三角形時(shí),AD與BC的數(shù)量關(guān)系為AD=BC;
②如圖3,當(dāng)∠BAC=90°,BC=8時(shí),則AD長(zhǎng)為 .
(2)在圖1中,當(dāng)△ABC為任意三角形時(shí),猜想AD與BC的數(shù)量關(guān)系,并給予證明.
(3)如圖4,在四邊形ABCD,∠C=90°,∠D=150°,BC=12,CD=2 ,DA=6.在四邊形內(nèi)部是否存在點(diǎn)P,使△PDC是△PAB的“旋補(bǔ)三角形”?若存在,給予證明,并求△PAB的“旋補(bǔ)中線”長(zhǎng);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=a(x﹣1)(x﹣3)與x軸交于A,B兩點(diǎn),與y軸的正半軸交于點(diǎn)C,其頂點(diǎn)為D.
(1)寫出C,D兩點(diǎn)的坐標(biāo)(用含a的式子表示);
(2)設(shè)S△BCD:S△ABD=k,求k的值;
(3)當(dāng)△BCD是直角三角形時(shí),求對(duì)應(yīng)拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在三角形紙片ABC中,∠A=90°,∠C=30°,AC=30cm,將該紙片沿過(guò)點(diǎn)B的直線折疊,使點(diǎn)A落在斜邊BC上的一點(diǎn)E處,折痕記為BD(如圖1),減去△CDE后得到雙層△BDE(如圖2),再沿著過(guò)△BDE某頂點(diǎn)的直線將雙層三角形剪開,使得展開后的平面圖形中有一個(gè)是平行四邊形,則所得平行四邊形的周長(zhǎng)為cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知雙曲線y= (k>0)與直線y=k′x交于A、B兩點(diǎn),點(diǎn)A在第一象限,試回答下列問(wèn)題:
(1)若點(diǎn)A的坐標(biāo)為(3,1),則點(diǎn)B的坐標(biāo)為;當(dāng)x滿足:時(shí), ≤k′x;
(2)如圖2,過(guò)原點(diǎn)O作另一條直線l,交雙曲線y= (k>0)于P,Q兩點(diǎn),點(diǎn)P在第一象限.
四邊形APBQ一定是;
(3)若點(diǎn)A的坐標(biāo)為(3,1),點(diǎn)P的橫坐標(biāo)為1,求四邊形APBQ的面積.
(4)設(shè)點(diǎn)A,P的橫坐標(biāo)分別為m,n,四邊形APBQ可能是矩形嗎?可能是正方形嗎?若可能,直接寫出m,n應(yīng)滿足的條件;若不可能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一次函數(shù)y=﹣x+1與反比例函數(shù) ,x與y的對(duì)應(yīng)值如下表:
x | ﹣3 | ﹣2 | ﹣1 | 1 | 2 | 3 |
y=﹣x+1 | 4 | 3 | 2 | 0 | ﹣1 | ﹣2 |
1 | 2 | ﹣2 | ﹣1 | ﹣ |
不等式﹣x+1>﹣ 的解為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com