【題目】小亮早晨從家騎車到學校,先上坡后下坡,所行路程y(米)與時間x(分鐘)的關(guān)系如圖所示,若返回時上坡、下坡的速度仍與去時上、下坡的速度分別相同,則小明從學校騎車回家用的時間是________分鐘.

【答案】63

【解析】

根據(jù)圖表可計算出上坡的速度以及下坡的速度,又已知返回途中的上下坡的路程正好相反,故可計算出共用的時間.

由圖可得,去校時,上坡路的距離為2000米,所用時間為18分,

∴上坡速度=2000÷18=/分,

下坡路的距離是9000-2000=7000米,所用時間為20-18=2分,

∴下坡速度=7000÷2=3500/分;

∵去學校時的上坡回家時變?yōu)橄缕、去學校時的下坡回家時變?yōu)樯掀拢?/span>

∴小明從學校騎車回家用的時間是:7000÷+2000÷3500=63+=63分鐘.

故答案為:63

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知,在Rt△OAB中,∠OAB=90°,∠BOA=30°,AB=2.若以O為坐標原點,OA所在直線為x軸,建立如圖所示的平面直角坐標系,點B在第一象限內(nèi).將Rt△OAB沿OB折疊后,點A落在第一象限內(nèi)的點C處.

(1)求點C的坐標;
(2)若拋物線y=ax2+bx(a≠0)經(jīng)過C、A兩點,求此拋物線的解析式;
(3)若上述拋物線的對稱軸與OB交于點D,點P為線段DB上一動點,過P作y軸的平行線,交拋物線于點M,問:是否存在這樣的點P,使得四邊形CDPM為等腰梯形?若存在,請求出此時點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平行四邊形ABCD中,E,F(xiàn)分別為AD,BC邊上的一點,增加下列條件,不能得出BEDF的是( 。

A. AE=CF B. BE=DF C. ∠EBF=∠FDE D. ∠BED=∠BFD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了創(chuàng)建全國衛(wèi)生城市,某社區(qū)要清理一個衛(wèi)生死角內(nèi)的垃圾,租用甲、乙兩車運送,兩車各運12趟可完成,需支付運費4800元.已知甲、乙兩車單獨運完此堆垃圾,乙車所運趟數(shù)是甲車的2倍,且乙車每趟運費比甲車少200元.

(1)求甲、乙兩車單獨運完此堆垃圾各需運多少趟?

(2)若單獨租用一臺車,租用哪臺車合算?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,D在邊AC上,且

如圖1,填空______,______

如圖2,若M為線段AC上的點,過M作直線H,分別交直線AB、BC與點N、E

求證:是等腰三角形;

試寫出線段AN、CE、CD之間的數(shù)量關(guān)系,并加以證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,P為射線BC上任意一點P和點B不重合,分別以AB,AP為邊在內(nèi)部作等邊和等邊,連結(jié)QE并延長交BP于點F,連接EP,若,,則______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】從﹣3,﹣2,﹣1,0,1,2,3這七個數(shù)中隨機抽取一個數(shù)記為a,則a的值是不等式組 的解,但不是方程x2﹣3x+2=0的實數(shù)解的概率為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=3,BC=2,點F是BC的中點,點E是邊AB上一點,且BE=2,連結(jié)DE,EF,并以DE,EF為邊作EFGD,連結(jié)BG,分別交EF和DC于點M,N,則 =

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:△ABC是等腰直角三角形,動點P在斜邊AB所在的直線上,以PC為直角邊作等腰直角三角形PCQ,其中∠PCQ=90°,探究并解決下列問題:
(1)如圖①,若點P在線段AB上,且AC=1+ ,PA= ,則:

① 線段PB= , PC= ;
② 猜想:PA2 , PB2 , PQ2三者之間的數(shù)量關(guān)系為;
(2)如圖②,若點P在AB的延長線上,在(1)中所猜想的結(jié)論仍然成立,請你利用圖②給出證明過程;

(3)若動點P滿足 = ,求 的值.(提示:請利用備用圖進行探求)

查看答案和解析>>

同步練習冊答案