【題目】如圖,一次函數(shù)y=x+2的圖象與反比例函數(shù)y=(k≠0)的圖象交于A,B兩點,且點A的坐標為(1,m).

(1)求反比例函數(shù)y=(k≠0)的表達式;

(2)若Py軸上一點,且滿足ABP的面積為6,求點P的坐標.

【答案】(1) y=(2) P(0,5)或(0,﹣1)

【解析】

(1)把A點坐標代入一次函數(shù)解析式可求得m的值,可得到A點坐標,再把A點坐標代入反比例函數(shù)解析式可求得k的值;
(2)聯(lián)立方程,解方程組即可求得B的坐標,設直線與y軸的交點為C(0,2),根據(jù)ABP的面積為6得出PC|xB|+PC|xA|=6,求出PC的長,即可求得P點的坐標.

解:(1)∵一次函數(shù)圖象過A點,

m=1+2,解得m=3,

A點坐標為(1,3),

又∵反比例函數(shù)圖象過A點,

k=1×3=3,

∴反比例函數(shù)y=(k≠0)的表達式為y=

(2)

解得

B(﹣3,﹣1),

設直線與y軸的交點為C(0,2),

∵△ABP的面積為6,

PC|xB|+PC|xA|=6,

PC(1+3)=6,

PC=3,

P(0,5)或(0,﹣1).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖AB⊙O的切線,切點為B,AO⊙O于點C,過點CDC⊥OA,交AB于點D.

(1)求證:∠CDO∠BDO

(2)∠A30°,⊙O的半徑為4,求陰影部分的面積(結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了解全校學生對新聞、體育、動畫、娛樂、戲曲五類電視節(jié)目的喜愛情況,隨機選取該校部分學生進行調(diào)查,要求每名學生從中只選一類最喜愛的電視節(jié)目.以下是根據(jù)調(diào)查結(jié)果繪制的統(tǒng)計圖表的一部分.

類別

A

B

C

D

E

節(jié)目類型

新聞

體育

動畫

娛樂

戲曲

人數(shù)

12

30

m

54

9

根據(jù)以上信息,解答下列問題:

(1)被調(diào)查的學生中,最喜愛體育節(jié)目的有   人,這些學生數(shù)占被調(diào)查總?cè)藬?shù)的百分比為   %.

(2)被調(diào)查學生的總?cè)藬?shù)為   人,統(tǒng)計表中m的值為   ,統(tǒng)計圖中n的值為   

(3)在統(tǒng)計圖中,B類所對應扇形圓心角的度數(shù)為   ;

(4)該校共有1000名學生,根據(jù)調(diào)查結(jié)果,估計該校最喜愛A類節(jié)目的人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是以O為圓心的半圓的直徑,半徑COAO,點M上的動點,且不與點A、C、B重合,直線AM交直線OC于點D,連結(jié)OMCM.

(1)若半圓的半徑為10.

①當∠AOM=60°時,求DM的長;

②當AM=12時,求DM的長.

(2)探究:在點M運動的過程中,∠DMC的大小是否為定值?若是,求出該定值;若不是,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點E是正方形ABCD的對角線AC上的一個動點(不與A、C重合),作EFAC交邊BC于點F,連接AF、BE交于點G

(1)求證:CAF∽△CBE

(2)若AF平分∠BAC,求證:AC2=2AGAF

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,反比例函數(shù)y=(k為常數(shù),且k≠5)經(jīng)過點A(1,3).

(1)求反比例函數(shù)的解析式;

(2)在x軸正半軸上有一點B,若AOB的面積為6,求直線AB的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ADABC外角∠EAC的平分線,ADABC的外接圓⊙O交于點D

(1)求證:DBDC;

2)若∠CAB30°,BC4,求劣弧的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=1,與軸的一個交點坐標為(1,0),其部分圖象如圖所示,下列結(jié)論:

4ac<b2; 方程ax2+bx+c=0的兩個根是 3a+c>0; y>0時,x的取值范圍是-1≤x<3; x<0時,yx增大而增大;

其中結(jié)論正確有__________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知實數(shù) a、b、c滿足 a+b2=1,a+1=c2﹣2c,若 m=2a2+5b2,實數(shù) m的取值范圍是______

查看答案和解析>>

同步練習冊答案