【題目】已知中,,,點D為直線BC上的一動點D不與點BC重合,以AD為邊作,使,,連接CE

發(fā)現(xiàn)問題:

如圖1,當點D在邊BC上時,

請寫出BDCE之間的位置關系為______,并猜想BCCE、CD之間的數(shù)量關系:______

嘗試探究:

如圖2,當點D在邊BC的延長線上且其他條件不變時,BDCE之間的位置關系、BCCE、CD之間的數(shù)量關系是否成立?若成立,請證明;若不成立,請寫出新的數(shù)量關系,說明理由;

拓展延伸:

如圖3,當點D在邊CB的延長線上且其他條件不變時,若,求線段ED的長.

【答案】1;;(2成立,數(shù)量關系不成立,關系為BC=CE-CD;(3

【解析】

根據(jù)條件,,,判定,即可得出BDCE之間的關系,根據(jù)全等三角形的性質,即可得到;

根據(jù)已知條件,判定,得出,再根據(jù),即可得到;

根據(jù)條件判定,得出,在中,由勾股定理得,即可解決問題.

如圖1,

,

中,

,

,

,

;

可得,,

,

故答案為:;

成立,數(shù)量關系不成立,關系為

理由:如圖2中,由同理可得,

,

E,

中,

,

,

,

,

,即,,

;;

如圖3中,由同理可得,

,

,

,

易證,

,,

,

中,由勾股定理得,

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】王老師從本校九年級質量檢測的成績中隨機地抽取一些同學的數(shù)學成績做質量分析,他先按照等級繪制這些人數(shù)學成績的扇形統(tǒng)計圖,如圖所示,數(shù)學成績等級標準見表1,又按分數(shù)段繪制成績分布表,如表2

1

2

分數(shù)段為90≤x≤100n個人中,其成績的中位數(shù)是95分.

根據(jù)以上信息回答下面問題:

1)王老師抽查了多少人?m、n的值分別是多少;

2)小明在此考試中得了95分,他說自己在這些考試中數(shù)學成績是A等級,他說的對嗎?為什么?

3)若此次測試數(shù)學學科普高的預測線是70分,該校九年級有900名學生,求數(shù)學學科達到普高預測線的學生約有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,一次函數(shù)的圖象與反比例函數(shù)的圖象交于點,點軸正半軸上一點,且,的面積是,則_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了弘揚荊州優(yōu)秀傳統(tǒng)文化,某中學舉辦了荊州文化知識大賽,其規(guī)則是:每位參賽選手回答100道選擇題,答對一題得1分,不答或錯答不得分、不扣分,賽后對全體參賽選手的答題情況進行了相關統(tǒng)計,整理并繪制成如下圖表:

組別

分數(shù)段

頻數(shù)(人)

頻率

1

50x60

30

0.1

2

60x70

45

0.15

3

70x80

60

n

4

80x90

m

0.4

5

90x100

45

0.15

請根據(jù)以圖表信息,解答下列問題:

1)表中m   ,n   

2)補全頻數(shù)分布直方圖;

3)全體參賽選手成績的中位數(shù)落在第幾組;

4)若得分在80分以上(含80分)的選手可獲獎,記者從所有參賽選手中隨機采訪1人,求這名選手恰好是獲獎者的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=3BC=4,點N為邊DC上一動點(不與CD重合),連接BN,作C關于直線BN的對稱點C′連接B C′, C′N,當C′恰好在ABD的邊上時,CN的長為__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】抗擊“新冠疫情”期間,某種消毒液A市需要6噸,B市需要8噸,正好M市儲備有10噸,N市儲備有4噸,預防“新冠疫情”領導小組決定將這14噸消毒液調往A市和B市,消毒液每噸的運費價格如下表。設從M市調運x噸到A市.

1)求調運14噸消毒液的總運費y關于x的函數(shù)關系式;

2)求出總運費最低的調運方案,最低運費的多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知AB是⊙O的直徑,C為⊙O上一點,OC=4,∠OAC=60°

()如圖①,過點C作⊙O的切線,與BA的延長線交于點P,求∠P的大;

()如圖②,PAB上一點,CP延長線與⊙O交于點Q.若AQ=CQ,求∠APC的大小及PA的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某小組為了解本校七年級女生的身高情況,統(tǒng)計了甲、乙兩個班女生的身高,并繪制了以下不完整的統(tǒng)計圖.(身高單位:)


請根據(jù)圖中信息,解答下列問題:

1)兩個班共有女生    人;

2)將頻數(shù)分布直方圖補充完整;

3)求扇形統(tǒng)計圖中部分所對應的扇形圓心角度數(shù);

4)該校七年級共有女生人,請估計身高在范圍的女生人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,點C在線段AB上,(點C不與A、B重合),分別以AC、BC為邊在AB同側作等邊三角形ACD和等邊三角形BCE,連接AE、BD交于點P

(觀察猜想)

AEBD的數(shù)量關系是   ;

②∠APD的度數(shù)為   

(數(shù)學思考)

如圖2,當點C在線段AB外時,(1)中的結論①、②是否仍然成立?若成立,請給予證明;若不成立,請你寫出正確結論再給予證明;

(拓展應用)

如圖3,點E為四邊形ABCD內一點,且滿足∠AED=∠BEC90°,AEDEBECE,對角線AC、BD交于點P,AC10,則四邊形ABCD的面積為   

查看答案和解析>>

同步練習冊答案