【題目】如圖,已知:在直角梯形ABCD中,AD∥BC,∠C=90°,AB=AD=25,BC=32,連接BD,AE⊥BD,垂足為E.
(1)求證:△ABE∽△DBC;
(2)求線段AE的長.
【答案】(1)證明見解析;(2)15.
【解析】試題分析:(1)由等腰三角形的性質(zhì)可知∠ABD=∠ADB,由AD∥BC可知,∠ADB=∠DBC,由此可得∠ABD=∠DBC,又∵∠AEB=∠C=90°,利用“AA”可證△ABE∽△DBC;
(2)由等腰三角形的性質(zhì)可知,BD=2BE,根據(jù)△ABE∽△DBC,利用相似比求BE,在Rt△ABE中,利用勾股定理求AE.
(1)證明:∵AB=AD=25,
∴∠ABD=∠ADB,
∵AD∥BC,
∴∠ADB=∠DBC,
∴∠ABD=∠DBC,
∵AE⊥BD,
∴∠AEB=∠C=90°,
∴△ABE∽△DBC;
(2)解:∵AB=AD,又AE⊥BD,
∴BE=DE,
∴BD=2BE,
由△ABE∽△DBC,
得,
∵AB=AD=25,BC=32,
∴,
∴BE=20,
∴AE=.
科目:初中數(shù)學 來源: 題型:
【題目】如果將拋物線y=x2+2向下平移1個單位,那么所得新拋物線的表達式是( )
A.y=(x﹣1)2+2
B.y=(x+1)2+2
C.y=x2+1
D.y=x2+3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】幾何體的三視圖相互關聯(lián).已知直三棱柱的三視圖如圖,在△PMN中,∠MPN=90°,PN=4,sin∠PMN= .
(1)求BC及FG的長;
(2)若主視圖與左視圖兩矩形相似,求AB的長;
(3)在(2)的情況下,求直三棱柱的表面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com