【題目】如圖,在△ABC中,AB=AC,∠BAC=100°,AB的垂直平分線DE分別交AB、BC于點D、E,則∠BAE=( 。

A.80°
B.60°
C.50°
D.40°

【答案】D
【解析】解:∵AB=AC,∠BAC=100°,
∴∠B=∠C=(180°﹣100°)÷2=40°,
∵DE是AB的垂直平分線,
∴AE=BE,
∴∠BAE=∠B=40°,
故選D.
【考點精析】解答此題的關(guān)鍵在于理解線段垂直平分線的性質(zhì)的相關(guān)知識,掌握垂直于一條線段并且平分這條線段的直線是這條線段的垂直平分線;線段垂直平分線的性質(zhì)定理:線段垂直平分線上的點和這條線段兩個端點的距離相等,以及對等腰三角形的性質(zhì)的理解,了解等腰三角形的兩個底角相等(簡稱:等邊對等角).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將正方形OABC放在平面直角坐標(biāo)系中,O是原點,A的坐標(biāo)為(1, ),則點C的坐標(biāo)為(
A.(﹣ ,1)
B.(﹣1,
C.( ,1)
D.(﹣ ,﹣1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列格式,運算正確的是(
A.a6÷a2=a3
B.(﹣3a22=9a4
C.3a+4b=7ab
D.2a2=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年5月份,某校九年級學(xué)生參加了南寧市中考體育考試,為了了解該校九年級(1)班同學(xué)的中考體育情況,對全班學(xué)生的中考體育成績進(jìn)行了統(tǒng)計,并繪制以下不完整的頻數(shù)分布表(如表)和扇形統(tǒng)計圖(如圖),根據(jù)圖表中的信息解答下列問題:

分組

分?jǐn)?shù)段(分)

頻數(shù)

A

36≤x<41

2

B

41≤x<46

5

C

46≤x<51

15

D

51≤x<56

m

E

56≤x<61

10


(1)求全班學(xué)生人數(shù)和m的值.
(2)直接學(xué)出該班學(xué)生的中考體育成績的中位數(shù)落在哪個分?jǐn)?shù)段.
(3)該班中考體育成績滿分共有3人,其中男生2人,女生1人,現(xiàn)需從這3人中隨機選取2人到八年級進(jìn)行經(jīng)驗交流,請用“列表法”或“畫樹狀圖法”求出恰好選到一男一女的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,D為AC邊的中點,且DB⊥BC,BC=4,CD=5.

(1)求DB的長;
(2)在△ABC中,求BC邊上高的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,E、F為對角線AC上的兩點,且AE=CF,連接DE、BF.

(1)寫出圖中所有的全等三角形;
(2)求證:DE∥BF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在甲口袋中有三張完全相同的卡片,分別標(biāo)有﹣1,1,2,乙口袋中有完全相同的卡片,分別標(biāo)有﹣2,3,4,從這兩個口袋中各隨機取出一張卡片.
(1)用樹狀圖或列表表示所有可能出現(xiàn)的結(jié)果;
(2)求兩次取出卡片的數(shù)字之積為正數(shù)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“全民閱讀”深入人心,好讀書,讀好書,讓人終身受益.為滿足同學(xué)們的讀書需求,學(xué)校圖書館準(zhǔn)備到新華書店采購文學(xué)名著和動漫書兩類圖書.經(jīng)了解,20本文學(xué)名著和40本動漫書共需1520元,20本文學(xué)名著比20本動漫書多440元(注:所采購的文學(xué)名著價格都一樣,所采購的動漫書價格都一樣).
(1)求每本文學(xué)名著和動漫書各多少元?
(2)若學(xué)校要求購買動漫書比文學(xué)名著多20本,動漫書和文學(xué)名著總數(shù)不低于72本,總費用不超過2000元,請求出所有符合條件的購書方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點A,C分別在x軸,y軸上,函數(shù)y=的圖象過點P(4,3)和矩形的頂點B(m,n)(0<m<4).

(1)求k的值.
(2)連接PA,PB,若△ABP的面積為6,求直線BP的解析式.

查看答案和解析>>

同步練習(xí)冊答案