精英家教網 > 初中數學 > 題目詳情

在平面直角坐標系中,反比例函數與二次函數y=k(x2+x-1)的圖象交于點A(1,k)和點B(-1,-k).
(1)當k=-2時,求反比例函數的解析式;
(2)要使反比例函數與二次函數都是y隨著x的增大而增大,求k應滿足的條件以及x的取值范圍.
(3)設二次函數的圖象的頂點為Q,當△ABQ是以AB為斜邊的直角三角形時,求k的值.

(1)y=-   (2)k<0  x≤-   (3)k=±

解析解:(1)因為k=-2,所以A(1,-2),
設反比例函數為y=,因為點A在函數的圖象上,所以-2=,
解得k1=-2,
反比例函數解析式為y=-.
(2)由y=k(x2+x-1)=kk,得拋物線對稱軸為直線x=-
當k>0時,反比例函數不存在y隨著x的增大而增大的取值范圍,所以k<0,
此時,當x<0或x>0時,反比例函數值y隨著x的增大而增大;
當x≤-時,二次函數值y隨著x的增大而增大,所以自變量x的取值范圍是x≤-.
(3)由題(2)得點Q的坐標為,
因為AQ⊥BQ,點O是AB的中點,
所以OQ=AB=OA,
k2=12+k2,解得k=±.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:解答題

如圖,二次函數的圖象與軸交于、兩點,與軸交于點,已知點(-1,0),點C(0,-2).
(1)求拋物線的函數解析式;
(2)試探究的外接圓的圓心位置,并求出圓心坐標;
(3)此拋物線上是否存在點P,使得以P、A、C、B為頂點的四邊形為梯形.若存在,請寫出所有符合條件的P點坐標;若不存在,請說明理由;
(4)若點是線段下方的拋物線上的一個動點,求面積的最大值以及此時點的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

已知二次函數的圖象經過點(0,- 3),且頂點坐標為(1,- 4).求這個解析式。

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

如圖,直線y=與x軸交于點A,與y軸交于點C,以AC為直徑作⊙M,點是劣弧AO上一動點(點與不重合).拋物線y=-經過點A、C,與x軸交于另一點B,

(1)求拋物線的解析式及點B的坐標;
(2)在拋物線的對稱軸上是否存在一點P,是︱PA—PC︱的值最大;若存在,求出點P的坐標;若不存在,請說明理由。
(3)連于點,延長,使,試探究當點運動到何處時,直線與⊙M相切,并請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

某商家獨家銷售具有地方特色的某種商品,每件進價為40元.經過市場調查,一周的銷售量y件與銷售單價x(x≥50)元/件的關系如下表:

銷售單價x
(元/件)

55
60
70
75

一周的銷售量y
(件)

450
400
300
250

(1)直接寫出y與x的函數關系式:                           
(2)設一周的銷售利潤為S元,請求出S與x的函數關系式,并確定當銷售單價在什么范圍內變化時,一周的銷售利潤隨著銷售單價的增大而增大?
(3)雅安地震牽動億萬人民的心,商家決定將商品一周的銷售利潤全部寄往災區(qū),在商家購進該商品的貸款不超過10000元情況下,請你求出該商家最大捐款數額是多少元?

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

如圖,矩形ABCD的兩邊長AB=18 cm,AD=4 cm,點P、Q分別從A、B同時出發(fā),P在邊AB上沿AB方向以每秒2 cm的速度勻速運動,Q在邊BC上沿BC方向以每秒1 cm的速度勻速運動.設運動時間為x秒,△PBQ的面積為y(cm2).

(1)求y關于x的函數關系式,并寫出x的取值范圍;
(2)求△PBQ的面積的最大值.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

在平面直角坐標系xOy中,拋物線的解析式是y=x2+1,點C的坐標為(-4,0),平行四邊形OABC的頂點A,B在拋物線上,AB與y軸交于點M,已知點Q(x,y)在拋物線上,點P(t,0)在x軸上.

(1)寫出點M的坐標;
(2)當四邊形CMQP是以MQ,PC為腰的梯形時;
①求t關于x的函數解析式和自變量x的取值范圍;
②當梯形CMQP的兩底的長度之比為1∶2時,求t的值.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

某商場購進一批單價為50元的商品,規(guī)定銷售時單價不低于進價,每件的利潤不超過40%.其中銷售量y(件)與所售單價x(元)的關系可以近似的看作如圖所表示的一次函數.

(1)求y與x之間的函數關系式,并求出x的取值范圍;
(2)設該公司獲得的總利潤(總利潤=總銷售額-總成本)為w元,求w與x之間的函數關系式.當銷售單價為何值時,所獲利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

如圖,在平面直角坐標系xOy中,AB在x軸上,以AB為直徑的半⊙O’與y軸正半軸交于點C,連接BC,AC.CD是半⊙O’的切線,AD⊥CD于點D.

(1)求證:∠CAD =∠CAB;
(2)已知拋物線過A、B、C三點,AB=10,tan∠CAD=
① 求拋物線的解析式;
② 判斷拋物線的頂點E是否在直線CD上,并說明理由;
③ 在拋物線上是否存在一點P,使四邊形PBCA是直角梯形.若存在,直接寫出點P的坐標(不寫求解過程);若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案