(2012•泰順縣模擬)若⊙O1、⊙O2的直徑分別為6和8,圓心距O1O2=7,則⊙O1與⊙O2的位置關(guān)系是(  )
分析:先將直徑轉(zhuǎn)化為半徑,求兩圓半徑的和或差,再與圓心距進(jìn)行比較,確定兩圓位置關(guān)系.
解答:解:∵⊙O1和⊙O2的半徑分別為3和4,圓心距O1O2=7,
O1O2=3+4=7,
∴根據(jù)圓心距與半徑之間的數(shù)量關(guān)系可知⊙O1與⊙O2相外切.
故選B.
點(diǎn)評(píng):本題考查了由數(shù)量關(guān)系來判斷兩圓位置關(guān)系的方法.設(shè)兩圓的半徑分別為R和r,且R≥r,圓心距為P:外離P>R+r;外切P=R+r;相交R-r<P<R+r;內(nèi)切P=R-r;內(nèi)含P<R-r.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•泰順縣模擬)有4張全新的撲克牌,其中黑桃、紅桃各2張,它們的背面都一樣,將它們洗勻后,背面朝上放到桌面上,從中任意摸出2張牌,摸出的花色不一樣的概率是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•泰順縣模擬)已知:(2x-1)9=a0+a1x+a2x2+…+a8x8+a9x9,則(a0+a2+a4+a6+a8)2-(a1+a3+a5+a7+a9)2的值為
-39
-39

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•泰順縣模擬)x為任何實(shí)數(shù),則
x2+1
+
(x-3)2+9
的最小值是
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•泰順縣模擬)為獎(jiǎng)勵(lì)期中考試中成績(jī)優(yōu)秀的同學(xué),九(1)班花62元錢購(gòu)買了單價(jià)分別為9元、5元的A、B兩種型號(hào)的黑色簽字筆作為獎(jiǎng)品,則共買了
10
10
支簽字筆.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•泰順縣模擬)直角梯形ABCD中,AD∥BC,AB=AD=3,邊BC,AB分別在x軸和y軸上,已知點(diǎn)C的坐標(biāo)分別為(4,0).動(dòng)點(diǎn)P從B點(diǎn)出發(fā),以每秒1個(gè)單位的速度沿BC方向作勻速直線運(yùn)動(dòng),同時(shí)點(diǎn)Q從D點(diǎn)出發(fā),以與P點(diǎn)相同的速度沿DA方向運(yùn)動(dòng),當(dāng)Q點(diǎn)運(yùn)動(dòng)到A點(diǎn)時(shí),P,Q兩點(diǎn)同時(shí)停止運(yùn)動(dòng).設(shè)點(diǎn)P運(yùn)動(dòng)時(shí)間為t,
(1)求線段CD的長(zhǎng).
(2)連接PQ交直線AC于點(diǎn)E,當(dāng)AE:EC=1:2時(shí),求t的值,并求出此時(shí)△PEC的面積.
(3)過Q點(diǎn)作垂直于AD的射線交AC于點(diǎn)M,交BC于點(diǎn)N,連接PM,
①是否存在某一時(shí)刻,使以M、P、C三點(diǎn)為頂點(diǎn)的三角形是等腰三角形?若存在,求出此時(shí)t的值;若不存在,請(qǐng)說明理由;
②當(dāng)t=
1
1
時(shí),點(diǎn)P、M、D在同一直線上.(直接寫出)

查看答案和解析>>

同步練習(xí)冊(cè)答案