【題目】如圖,已知⊙O是△ABC的外接圓,AC是直徑,∠A=30°,BC=4,點(diǎn)D是AB的中點(diǎn),連接DO并延長交⊙O于點(diǎn)P.
(1)求劣弧PC的長(結(jié)果保留π);
(2)過點(diǎn)P作PF⊥AC于點(diǎn)F,求陰影部分的面積(結(jié)果保留π).
【答案】(1) (2)
【解析】
試題(1) 根據(jù)垂經(jīng)定理及其推論先求出∠POC=∠AOD=60°,然后再根據(jù)條件求出圓的半徑為2,利用弧長公式計算即可;(2)利用特殊角求出OF,PF的長,然后根據(jù)S陰影=S扇形﹣S△OPF代入數(shù)值計算即可.
試題解析:解:(1)∵點(diǎn)D是AB的中點(diǎn),PD經(jīng)過圓心,
∴PD⊥AB,
∵∠A=30°,
∴∠POC=∠AOD=60°,OA=2OD,
∵PF⊥AC,
∴∠OPF=30°,
∴OF=OP,
∵OA=OC,AD=BD,
∴BC=2OD,
∴OA=BC=2,
∴⊙O的半徑為2,
∴劣弧PC的長==;
(2)∵OF=OP,
∴OF=1,
∴PF=,
∴S陰影=S扇形﹣S△OPF==.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,P是CD邊上的一點(diǎn),AP與BP分別平分∠DAB和∠CBA.
(1)判斷△APB是什么三角形,證明你的結(jié)論;
(2)比較DP與PC的大;
(3)畫出以AB為直徑的⊙O,交AD于點(diǎn)E,連接BE與AP交于點(diǎn)F,若tan∠BPC=,求tan∠AFE的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在圓O中,弦AB=8,點(diǎn)C在圓O上(C與A,B不重合),連接CA、CB,過點(diǎn)O分別作OD⊥AC,OE⊥BC,垂足分別是點(diǎn)D、E.
(1)求線段DE的長;
(2)點(diǎn)O到AB的距離為3,求圓O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx+c(a≠0)與x軸交于點(diǎn)A(﹣1,0),對稱軸為x=1,與y軸的交點(diǎn)B在(0,2)和(0,3)之間(包含這兩個點(diǎn))運(yùn)動.有如下四個結(jié)論:①拋物線與x軸的另一個交點(diǎn)是(3,0);②點(diǎn)C(x1,y1),D(x2,y2)在拋物線上,且滿足x1<x2<1,則y1>y2;③常數(shù)項(xiàng)c的取值范圍是2≤c≤3;④系數(shù)a的取值范圍是﹣1≤a≤﹣.上述結(jié)論中,所有正確結(jié)論的序號是( 。
A. ①②③ B. ②③④ C. ①④ D. ①③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx+3(a≠0)經(jīng)過(1,0),且與y軸交于點(diǎn)C.
(1)直接寫出點(diǎn)C的坐標(biāo) ;
(2)求a,b的數(shù)量關(guān)系;
(3)點(diǎn)D(t,3)是拋物線y=ax2+bx+3上一點(diǎn)(點(diǎn)D不與點(diǎn)C重合).
①當(dāng)t=3時,求拋物線的表達(dá)式;
②當(dāng)3<CD<4時,求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示雙曲線y=與y=﹣分別位于第三象限和第二象限,A是y軸上任意一點(diǎn),B是y=﹣上的點(diǎn),C是y=上的點(diǎn),線段BC⊥x軸于D,且4BD=3CD,則下列說法:①雙曲線y=在每個象限內(nèi),y隨x的增大而減小;②若點(diǎn)B的橫坐標(biāo)為﹣3,則C點(diǎn)的坐標(biāo)為(﹣3,);③k=4;④△ABC的面積為定值7,正確的有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=x2﹣2mx+m2+1(m為常數(shù)),當(dāng)自變量x的值滿足﹣3≤x≤﹣1時,與其對應(yīng)的函數(shù)值y的最小值為5,則m的值為( 。
A. 1或﹣3 B. ﹣3或﹣5 C. 1或﹣1 D. 1或﹣5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是小松設(shè)計的“做圓的內(nèi)接等腰直角三角形”的尺規(guī)作圖過程.
已知:⊙O.
求作:⊙O的內(nèi)接等腰直角三角形.
作法:如圖,
①作直徑AB;
②分別以點(diǎn)A,B為圓心,以大于的同樣長為半徑作弧,兩弧交于M,N兩點(diǎn);
③作直線MN交⊙O于點(diǎn)C,D;
④連接AC,BC.
所以△ABC就是所求作的三角形.
根據(jù)小松設(shè)計的尺規(guī)作圖過程,
(1)使用直尺和圓規(guī),補(bǔ)全圖形;(保留作圖痕跡)
(2)完成下面的證明.
證明:∵AB是直徑, C是⊙O上一點(diǎn)
∴ ∠ACB= ( ) (填寫推理依據(jù))
∵AC=BC( )(填寫推理依據(jù))
∴△ABC是等腰直角三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若干個相同的正方體組成一個幾何體,從不同方向看可以得到如圖所示的形狀,則這個幾何體最多可由多少個這樣的正方體組成?( )
A. 12個 B. 13個 C. 14個 D. 18個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com