如圖,在矩形ABCD中,AB=6,AD=12,點E在AD邊上,且AE=8,EF⊥BE交CD于F.
(1)求證:△ABE∽△DEF;
(2)求EF的長.

【答案】分析:(1)由四邊形ABCD是矩形,易得∠A=∠D=90°,又由EF⊥BE,利用同角的余角相等,即可得∠DEF=∠ABE,則可證得△ABE∽△DEF;
(2)由(1):△ABE∽△DEF,根據(jù)相似三角形的對應(yīng)邊成比例,即可得,又由AB=6,AD=12,AE=8,利用勾股定理求得BE的長,由DE=AB-AE,求得DE的長,繼而求得EF的長.
解答:(1)證明:∵四邊形ABCD是矩形,
∴∠A=∠D=90°,
∴∠AEB+∠ABE=90°,
∵EF⊥BE,
∴∠AEB+∠DEF=90°,
∴∠DEF=∠ABE,
∴△ABE∽△DEF;

(2)解:∵△ABE∽△DEF,
,
∵AB=6,AD=12,AE=8,
∴BE==10,DE=AD-AE=12-8=4,

解得:EF=
點評:此題考查了相似三角形的判定與性質(zhì)、矩形的性質(zhì)以及勾股定理等知識.此題難度不大,注意掌握有兩角對應(yīng)相等的三角形相似定理的應(yīng)用是解此題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在矩形ABCD中,AB=4cm,BC=8cm,點P從點A出發(fā)以1cm/s的速度向點B運(yùn)動,點Q從點B出發(fā)以2cm/s的速度向點C運(yùn)動,設(shè)經(jīng)過的時間為xs,△PBQ的面積為ycm2,則下列圖象能反映y與x之間的函數(shù)關(guān)系的是(  )
A、精英家教網(wǎng)B、精英家教網(wǎng)C、精英家教網(wǎng)D、精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在矩形ABCD中,點O在對角線AC上,以O(shè)A的長為半徑的⊙O與AD、AC分別交于點E、F,且∠ACB=∠DCE精英家教網(wǎng)
(1)判斷直線CE與⊙O的位置關(guān)系,并說明理由;
(2)若AB=
2
,BC=2,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖①,在矩形 ABCD中,AB=30cm,BC=60cm.點P從點A出發(fā),沿A→B→C→D路線向點D勻速運(yùn)動,到達(dá)點D后停止;點Q從點D出發(fā),沿 D→C→B→A路線向點A勻速運(yùn)動,到達(dá)點A后停止.若點P、Q同時出發(fā),在運(yùn)動過程中,Q點停留了1s,圖②是P、Q兩點在折線AB-BC-CD上相距的路程S(cm)與時間t(s)之間的函數(shù)關(guān)系圖象.
(1)請解釋圖中點H的實際意義?
(2)求P、Q兩點的運(yùn)動速度;
(3)將圖②補(bǔ)充完整;
(4)當(dāng)時間t為何值時,△PCQ為等腰三角形?請直接寫出t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在矩形ABCD中,對角線AC,BD相交于點O,∠AOB=60°,AB=6,則AD=( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在矩形ABCD中,AB=4,BC=6,E為線段BC上的動點(不與B、C重合).連接DE,作EF⊥DE,EF與AB交于點F,設(shè)CE=x,BF=y.
(1)求y與x的函數(shù)關(guān)系式;
(2)x為何值時,y的值最大,最大值是多少?
(3)若設(shè)線段AB的長為m,上述其它條件不變,m為何值時,函數(shù)y的最大值等于3?

查看答案和解析>>

同步練習(xí)冊答案