【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC的三個(gè)頂點(diǎn)坐標(biāo)是A0,﹣2),B6,﹣4),C2,﹣6).

1)請(qǐng)畫出與△ABC關(guān)于x軸對(duì)稱的△A1B1C1

2)以點(diǎn)O為位似中心,將△ABC縮小為原來(lái)的,得到△A2B2C2,請(qǐng)?jiān)?/span>y軸左側(cè)畫出△A2B2C2

3)在y軸上存在點(diǎn)P,使得△OB2P的面積為6,請(qǐng)直接寫出滿足條件的點(diǎn)P的坐標(biāo).

【答案】1)詳見解析;(2)詳見解析;(3)(04),(0,﹣4).

【解析】

1)直接利用關(guān)于x軸對(duì)稱點(diǎn)的性質(zhì)得出對(duì)應(yīng)點(diǎn)坐標(biāo)進(jìn)而得出答案;

2)直接利用關(guān)于位似圖形的性質(zhì)得出對(duì)應(yīng)點(diǎn)坐標(biāo)進(jìn)而得出答案;

3)直接利用三角形面積求法得出答案.

1)如圖所示:△A1B1C1,即為所求;

2)如圖所示:△A2B2C2,即為所求;

3)如圖所示:當(dāng)△OB2P的面積為6時(shí),點(diǎn)P的坐標(biāo)為:(0,4),

0,﹣4).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】綜合與實(shí)踐

1)(探索發(fā)現(xiàn))在. ,點(diǎn)為直線上一動(dòng)點(diǎn)(點(diǎn)不與點(diǎn),重合),過(guò)點(diǎn)交直線于點(diǎn),將繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到,連接

如圖(1),當(dāng)點(diǎn)在線段上,且時(shí),試猜想:

之間的數(shù)量關(guān)系:______

______

2)(拓展探究)

如圖(2),當(dāng)點(diǎn)在線段上,且時(shí),判斷之間的數(shù)量關(guān)系及的度數(shù),請(qǐng)說(shuō)明理由.

3)(解決問題)

如圖(3),在中,,,點(diǎn)在射線上,將繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到,連接.當(dāng)時(shí),直接寫出的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,對(duì)于點(diǎn)和點(diǎn),給出如下定義:

,則稱點(diǎn)為點(diǎn)的限變點(diǎn).

例如:點(diǎn)的限變點(diǎn)的坐標(biāo)為,點(diǎn)的限變點(diǎn)的坐標(biāo)是

1)①的限變點(diǎn)的坐標(biāo)是____________

②若點(diǎn)在函數(shù)圖象上,其限變點(diǎn)在函數(shù)的圖象上,則函數(shù)的函數(shù)值的增大而增大時(shí)自變量的取值范圍是____________

2)若點(diǎn)在函數(shù)的圖象上,其限變點(diǎn)的縱坐標(biāo)的取值范圍是,求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,AB=AC=4,將ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)30°,得到ACD,延長(zhǎng)ADBC的延長(zhǎng)線于點(diǎn)E,則DE的長(zhǎng)為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校為了解八年級(jí)學(xué)生的體能狀況,從八年級(jí)學(xué)生中隨機(jī)抽取部分學(xué)生進(jìn)行八百米跑體能測(cè)試,測(cè)試結(jié)果分為A、B、C、D四個(gè)等級(jí),請(qǐng)根據(jù)兩幅統(tǒng)計(jì)圖中的信息回答下列問題:

(1)求本次測(cè)試共調(diào)查了多少名學(xué)生?

(2)求本次測(cè)試結(jié)果為B等級(jí)的學(xué)生數(shù),并補(bǔ)全條形統(tǒng)計(jì)圖;

(3)若該中學(xué)八年級(jí)共有900名學(xué)生,請(qǐng)你估計(jì)八年級(jí)學(xué)生中體能測(cè)試結(jié)果為D等級(jí)的學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y+bx+cx軸交于點(diǎn)A和點(diǎn)B(點(diǎn)A在原點(diǎn)的左側(cè),點(diǎn)B在原點(diǎn)的右側(cè)),與y軸交于點(diǎn)C,且OC2OA2,點(diǎn)D是直線BC下方拋物線上一動(dòng)點(diǎn).

1)求出拋物線的解析式;

2)連接ADBC,ADBC于點(diǎn)E,當(dāng)SABESBDE54時(shí),求點(diǎn)D的坐標(biāo);

3)點(diǎn)Fy軸上的一點(diǎn),在(2)的條件下,求DF+OF的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在⊙O中,弦AB=1,點(diǎn)CAB上移動(dòng),連結(jié)OC,過(guò)點(diǎn)CCDOC交⊙O于點(diǎn)D,則CD的最大值為___

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,已知點(diǎn)的坐標(biāo)為,點(diǎn)分別是某函數(shù)圖象與軸、軸的交點(diǎn),點(diǎn)是此圖象上的一動(dòng)點(diǎn).設(shè)點(diǎn)的橫坐標(biāo)為的長(zhǎng)為,且之間滿足關(guān)系:,則正確結(jié)論的序號(hào)是(

;②;③當(dāng)時(shí),;④的最大值是6

A.①②③B.③④C.①②④D.①④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】⑴如圖1是正方形上的一點(diǎn),連接,將繞著點(diǎn)逆時(shí)針旋轉(zhuǎn)90°,旋轉(zhuǎn)后角的兩邊分別與射線交于點(diǎn)和點(diǎn).

①線段的數(shù)量關(guān)系是 ;

②寫出線段之間的數(shù)量關(guān)系.

⑵當(dāng)四邊形為菱形,,點(diǎn)是菱形所在直線上的一點(diǎn),連接,將繞著點(diǎn)逆時(shí)針旋轉(zhuǎn)120°,旋轉(zhuǎn)后角的兩邊分別與射線交于點(diǎn)和點(diǎn).

①如圖2,點(diǎn)在線段上時(shí),請(qǐng)?zhí)骄烤段之間的數(shù)量關(guān)系,寫出結(jié)論并給出證明;

②如圖3,點(diǎn)在線段的延長(zhǎng)線上時(shí),交射線于點(diǎn);若 ,直接寫出線段的長(zhǎng)度.

查看答案和解析>>

同步練習(xí)冊(cè)答案