【題目】近期豬肉價(jià)格不斷走高,引起了民眾與政府的高度關(guān)注.當(dāng)市場(chǎng)豬肉的平均價(jià)格每千克達(dá)到一定的單價(jià)時(shí),政府將投入儲(chǔ)備豬肉以平抑豬肉價(jià)格.
(1)從今年年初至5月20日,豬肉價(jià)格不斷走高,5月20日比年初價(jià)格上漲了60%.某市民在今年5月20日購(gòu)買2.5千克豬肉至少要花100元錢,那么今年年初豬肉的最低價(jià)格為每千克多少元?
(2)5月20日,豬肉價(jià)格為每千克40元.5月21日,某市決定投入儲(chǔ)備豬肉并規(guī)定其銷售價(jià)在每千克40元的基礎(chǔ)上下調(diào)a%出售.某超市按規(guī)定價(jià)出售一批儲(chǔ)備豬肉,該超市在非儲(chǔ)備豬肉的價(jià)格仍為每千克40元的情況下,該天的兩種豬肉總銷量比5月20日增加了a%,且儲(chǔ)備豬肉的銷量占總銷量的 ,兩種豬肉銷售的總金額比5月20日提高了 a%,求a的值.

【答案】
(1)

解:設(shè)今年年初豬肉價(jià)格為每千克x元;

根據(jù)題意得:2.5×(1+60%)x≥100,

解得:x≥25.

答:今年年初豬肉的最低價(jià)格為每千克25元


(2)

解:設(shè)5月20日兩種豬肉總銷量為1;

根據(jù)題意得:40(1﹣a%)× (1+a%)+40× (1+a%)=40(1+ a%),

令a%=y,原方程化為:40(1﹣y)× (1+y)+40× (1+y)=40(1+ y),

整理得:5y2﹣y=0,

解得:y=0.2,或y=0(舍去),

則a%=0.2,

∴a=20;

答:a的值為20


【解析】(1)設(shè)今年年初豬肉價(jià)格為每千克x元;根據(jù)題意列出一元一次不等式,解不等式即可;(2)設(shè)5月20日兩種豬肉總銷量為1;根據(jù)題意列出方程,解方程即可.本題考查了一元一次不等式的應(yīng)用、一元二次方程的應(yīng)用;根據(jù)題意列出不等式和方程是解決問(wèn)題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,Rt△ABC中,∠ACB=90°,AC=4,BC=3,若把直角三角形繞邊AB所在直線旋轉(zhuǎn)一周,則所得幾何體的表面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校為了解七年級(jí)男生體質(zhì)健康情況,隨機(jī)抽取若干名男生進(jìn)行測(cè)試,測(cè)試結(jié)果分為優(yōu)秀、良好、合格、不合格四個(gè)等級(jí),統(tǒng)計(jì)整理數(shù)據(jù)并繪制圖1、圖2兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中信息回答下列問(wèn)題:

(1)本次接收隨機(jī)抽樣調(diào)查的男生人數(shù)為 人,扇形統(tǒng)計(jì)圖中“良好”所對(duì)應(yīng)的圓心角的度數(shù)為 。
(2)補(bǔ)全條形統(tǒng)計(jì)圖中“優(yōu)秀”的空缺部分。
(3)若該校七年級(jí)共有男生480人,請(qǐng)估計(jì)全年級(jí)男生體質(zhì)健康狀況達(dá)到“良好”的人數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,點(diǎn)C是的中點(diǎn),⊙O的切線BD交AC的延長(zhǎng)線于點(diǎn)D,E是OB的中點(diǎn),CE的延長(zhǎng)線交切線BD于點(diǎn)F,AF交⊙O于點(diǎn)H,連接BH.

(1)求證:AC=CD;
(2)若OC=,求BH的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為增強(qiáng)學(xué)生體質(zhì),某中學(xué)在體育課中加強(qiáng)了學(xué)生的長(zhǎng)跑訓(xùn)練.在一次女子800米耐力測(cè)試中,小靜和小茜在校園內(nèi)200米的環(huán)形跑道上同時(shí)起跑,同時(shí)到達(dá)終點(diǎn);所跑的路程S(米)與所用的時(shí)間t(秒)之間的函數(shù)圖象如圖所示,則她們第一次相遇的時(shí)間是起跑后的第秒.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】從﹣3,﹣1, ,1,3這五個(gè)數(shù)中,隨機(jī)抽取一個(gè)數(shù),記為a,若數(shù)a使關(guān)于x的不等式組 無(wú)解,且使關(guān)于x的分式方程 =﹣1有整數(shù)解,那么這5個(gè)數(shù)中所有滿足條件的a的值之和是( 。
A.﹣3
B.﹣2
C.﹣
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們知道,任意一個(gè)正整數(shù)n都可以進(jìn)行這樣的分解:n=p×q(p,q是正整數(shù),且p≤q),在n的所有這種分解中,如果p,q兩因數(shù)之差的絕對(duì)值最小,我們就稱p×q是n的最佳分解.并規(guī)定:F(n)= .例如12可以分解成1×12,2×6或3×4,因?yàn)?2﹣1>6﹣2>4﹣3,所有3×4是12的最佳分解,所以F(12)=
(1)如果一個(gè)正整數(shù)a是另外一個(gè)正整數(shù)b的平方,我們稱正整數(shù)a是完全平方數(shù).求證:對(duì)任意一個(gè)完全平方數(shù)m,總有F(m)=1;
(2)如果一個(gè)兩位正整數(shù)t,t=10x+y(1≤x≤y≤9,x,y為自然數(shù)),交換其個(gè)位上的數(shù)與十位上的數(shù)得到的新數(shù)減去原來(lái)的兩位正整數(shù)所得的差為18,那么我們稱這個(gè)數(shù)t為“吉祥數(shù)”,求所有“吉祥數(shù)”中F(t)的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形ABCD中,過(guò)點(diǎn)B作BE⊥AD,BF⊥CD,垂足分別為點(diǎn)E,F(xiàn),延長(zhǎng)BD至G,使得DG=BD,連結(jié)EG,F(xiàn)G,若AE=DE,則 =

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,四邊形ABCD是平行四邊形,延長(zhǎng)BA至點(diǎn)E,使AE+CD=AD.連結(jié)CE,求證:CE平分∠BCD.

查看答案和解析>>

同步練習(xí)冊(cè)答案