精英家教網 > 初中數學 > 題目詳情

【題目】如圖,從地面上的點A看一山坡上的電線桿PQ,測得桿頂端點P的仰角是45°,向前走6m到達B點,測得桿頂端點P和桿底端點Q的仰角分別是60°30°

1)求∠BPQ的度數;

2)求該電線桿PQ的高度(結果精確到1m).

備用數據:,

【答案】(130°;(29m

【解析】試題分析:(1)延長PQ交直線AB于點E,根據直角三角形兩銳角互余求得即可;

2)設PE=x米,在直角△APE和直角△BPE中,根據三角函數利用x表示出AEBE,根據AB=AE-BE即可列出方程求得x的值,再在直角△BQE中利用三角函數求得QE的長,則PQ的長度即可求解.

試題解析:延長PQ交直線AB于點E,

1∠BPQ=90°-60°=30°

2)設PE=x米.

在直角△APE中,∠A=45°,

AE=PE=x米;

∵∠PBE=60°

∴∠BPE=30°

在直角BPE中,BE=PE=x米,

∵AB=AE-BE=6米,

x-x=6

解得:x=9+3

BE=3+3)米.

在直角BEQ中,QE=BE=3+3=3+)米.

PQ=PE-QE=9+3-3+=6+2≈9(米).

答:電線桿PQ的高度約9米.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】某地出租車計費方法如圖所示,x(km)表示行駛里程,y(元)表示車費.根據圖象解決下列問題:

1)該地出租車的起步價是多少元?

2)當時,求之間的函數關系式.

3)若某乘客有一次乘出租車的里程為18km,則這位乘客需付出租車車費多少元?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】觀察下面的三行單項式

x,2x2,4x38x4,16x5

2x4x2,﹣8x3,16x4,﹣32x5

2x,﹣3x2,5x3,﹣9x417x5

根據你發(fā)現的規(guī)律,完成以下各題:

1)第行第8個單項式為   ;第行第2020個單項式為   

2)第行第n個單項式為   

3)取每行的第9個單項式,令這三個單項式的和為A.計算當x時,256A+)的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在ABCD中,ABBD,sinA=,將ABCD放置在平面直角坐標系中,且ADx軸,點D的橫坐標為1,點C的縱坐標為3,恰有一條雙曲線y=(k>0)同時經過B、D兩點,則點B的坐標是_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在讀書月活動中,學校準備購買一批課外讀物,為使課外讀物滿足同學們的需求,學校就我最喜愛的課外讀物從文學、藝術、科普和其他四個類別進行了抽樣調查文化藝術節(jié)上,小明參加學校組織的一站到底活動,答對最后兩道單選題就通關:第一道單選題有A、B、C3個選項,第二道單選題有A、B、C、D4個選項,這兩道題小明都不會,不過小明還有一次求助的機會沒有用(使用求助可以讓主持人去掉其中一題的一個錯誤選項).

(1)如果小明第一題不使用求助,那么小明答對第一道題的概率是   ;

(2)如果小明決定第一題不使用求助,第二題使用求助,請用樹狀圖或者列表來分析小明通關的概率;

(3)從概率的角度分析,你建議小明在第幾題使用求助.(直接寫出答案)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線y=﹣x2+bx+Cx軸交于點A(﹣1,0),B(﹣3,0),與y軸交于點C,頂點為D,拋物線的對稱軸與x軸的交點為E.

(1)求拋物線的解析式及E點的坐標;

(2)設點P是拋物線對稱軸上一點,且∠BPD=BCA,求點P的坐標;

(3)點F的坐標為(﹣2,4),若點Q在該拋物線的對稱軸上,以Q為圓心的圓過A、B兩點,并且和直線OF相切,求點Q的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某小組做用頻率估計概率的試驗時,統(tǒng)計了某一結果出現的頻率,繪制了如圖所示的折線統(tǒng)計圖,則符合這一結果的試驗最有可能的是(  )

A. 石頭、剪刀、布的游戲中小明隨機出的是剪刀

B. 一副去掉大小王的普通撲克牌洗勻后,從中任抽一張牌的花色是紅桃

C. 暗箱中有1個紅球和2個黃球它們只有顏色上的區(qū)別,從中任取一球是黃球

D. 擲一個質地均勻的正六面體骰子,向上的面點數是4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】對于下面每個三角形,過頂點A畫出中線和高.(用直尺規(guī)范畫圖,否則不計分)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】下列方程是關于x的一元二次方程的是(  )

A. ax2+bx+c=0 B. =2 C. x2+2x=y(tǒng)2-1 D. 3(x+1)2=2(x+1)

查看答案和解析>>

同步練習冊答案