【題目】在桌面上,有6個(gè)完全相同的小正方體對(duì)成的一個(gè)幾何體,如圖所示.

(1)請畫出這個(gè)幾何體的三視圖.

(2)若將此幾何A的表面噴上紅漆(放在桌面上的一面不噴),則三個(gè)面上是紅色的小正方體有____個(gè)

(3)若另一個(gè)幾何體B與幾何體A的主視圖和左視圖相同,而小正方體個(gè)數(shù)則比幾何體A1個(gè),則共有______種添法. 請?jiān)趫D2中畫出幾何體B的俯視圖可能的兩種不同情形.

(4)若現(xiàn)在你的手頭還有一些相同的小正方體可添放在幾何體A上,要保持主視圖和左視圖不變,則最多可以添___________個(gè)

【答案】(1)詳見解析;(2)2個(gè)(3)4種;(4)4個(gè).

【解析】

見詳解.

(1)如下圖

(2)三個(gè)面是紅色的有2個(gè),為從上往下數(shù)第二行第一列的那兩個(gè).

(3)4種添發(fā);見下圖,答案不唯一.

(4)由圖可知該幾何體最多有10個(gè)正方體,幾何體A只有6個(gè)小正方體,

10-6=4,所以最多可以添加4個(gè)正方體.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=2x+3與y軸交于A點(diǎn),與反比例函數(shù)y= (x>0)的圖象交于點(diǎn)B,過點(diǎn)B作BC⊥x軸于點(diǎn)C,且C點(diǎn)的坐標(biāo)為(1,0).
(1)求反比例函數(shù)的解析式;
(2)點(diǎn)D(a,1)是反比例函數(shù)y= (x>0)圖象上的點(diǎn),在x軸上是否存在點(diǎn)P,使得PB+PD最?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】試比較下列兩個(gè)方程的異同, +2x-3=0, +2x+3=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在正方形中,,邊上一點(diǎn),連接,過點(diǎn),,,垂足分別為,,如圖1.

1請?zhí)骄?/span>,,這三條線段有怎樣的數(shù)量關(guān)系?請說明理由;

2)若點(diǎn)的延長線上,如圖2,那么這三條線段的數(shù)量關(guān)系是 (直接寫結(jié)果)

(3)若點(diǎn)的延長線上,如圖3,那么這三條線段的數(shù)量關(guān)系是 (直接寫結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,C 為線段 AD 上一點(diǎn),B CD 的中點(diǎn),AD=13cm,BD=3cm.

(1)圖中共有 條線段;

(2) AC 的長

(3)若點(diǎn) E 在線段 AD 上,且 BE=2cm, AE 的長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)若x,y都是實(shí)數(shù),且,求5x+13y+6的立方根;

(2)已知ABC的三邊長分別為a,b,c,且滿足,求c的取值范圍。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)在正是草莓熱銷的季節(jié),某水果零售商店分兩批次從批發(fā)市場共購進(jìn)草莓40箱,已知第一、二次進(jìn)貨價(jià)分別為每箱50元、40元,且第二次比第一次多付款700元.
(1)設(shè)第一、二次購進(jìn)草莓的箱數(shù)分別為a箱、b箱,求a,b的值;
(2)若商店對(duì)這40箱草莓先按每箱60元銷售了x箱,其余的按每箱35元全部售完. ①求商店銷售完全部草莓所獲利潤y(元)與x(箱)之間的函數(shù)關(guān)系式;
②當(dāng)x的值至少為多少時(shí),商店才不會(huì)虧本.
(注:按整箱出售,利潤=銷售總收入﹣進(jìn)貨總成本)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,數(shù)軸的單位長度為1

(1)如果點(diǎn)B,D表示的數(shù)互為相反數(shù),那么圖中點(diǎn)A、點(diǎn)D表示的數(shù)分別是 ;

(2)當(dāng)點(diǎn)B為原點(diǎn)時(shí),在數(shù)軸上是否存在點(diǎn)M,使得點(diǎn)M到點(diǎn)A的距離是點(diǎn)M到點(diǎn)D的距離的2倍,若存在,請求出此時(shí)點(diǎn)M所表示的數(shù);若不存在,說明理由;

(3) 在(2)的條件下,點(diǎn)A、點(diǎn)C分別以2個(gè)單位長度/秒和0.5個(gè)單位長度同時(shí)向右運(yùn)動(dòng),同時(shí)點(diǎn)P從原點(diǎn)出發(fā)以3個(gè)單位長度/秒的速度向左運(yùn)動(dòng),當(dāng)點(diǎn)A與點(diǎn)C之間的距離為3個(gè)單位長度時(shí),求點(diǎn)P所對(duì)應(yīng)的數(shù)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB∥CD,以點(diǎn)A為圓心,小于AC長為半徑作圓弧,分別交AB,AC于E,F(xiàn)兩點(diǎn),再分別以E,F(xiàn)為圓心,大于EF長為半徑作圓弧,兩條圓弧交于點(diǎn)P,作射線AP,交CD于點(diǎn)M。

(1)若∠ACD=114°,求∠MAB的度數(shù);

(2)若CN⊥AM,垂足為N,求證:△ACN≌△MCN。

查看答案和解析>>

同步練習(xí)冊答案