15、如圖,AD⊥BC于D,DE∥AC,則∠C與∠ADE之和為
90
度.
分析:本題主要利用兩直線平行,同旁內(nèi)角互補以及垂直的定義進行做題.
解答:解:∵AD⊥BC,
∴∠ADC=90°,
∵DE∥AC,
∴∠C=∠BDE;
∴∠EDA+∠ADC+∠C=180°,
即∠C+∠ADE=90°.
點評:本題重點考查了平行線的性質及垂直的定義,是一道較為簡單的題目.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

23、已知:如圖,AD⊥BC于D,EF⊥BC于F,交AB于G,交CA延長線于E,∠1=∠2.
求證:AD平分∠BAC,填寫分析和證明中的空白.
分析:要證明AD平分∠BAC,只要證明
∠BAD
=
∠CAD
,
而已知∠1=∠2,所以應聯(lián)想這兩個角分別和∠1、∠2的關系,由已知BC的兩條垂線可推出
EF
AD
,這時再觀察這兩對角的關系已不難得到結論.
證明:∵AD⊥BC,EF⊥BC(已知)
EF
AD
在同一平面內(nèi),垂直與同一直線的兩直線平行

∠1
=
∠BAD
(兩直線平行,內(nèi)錯角相等),
∠2
=
∠CAD
(兩直線平行,同位角相等)
∠1=∠2
(已知)
∠BAD=∠CAD
,即AD平分∠BAC(
角平分線的定義

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

22、如圖,AD⊥BC于D,EF⊥BC于F,且∠E=∠1,求證∠BAD=∠CAD.
證明:∵AD⊥BC,EF⊥BC,
∴∠EFD=∠ADC=90°(垂線的定義)
EF
AD
(同位角相等,兩直線平行)
∴∠BAD=∠1(
兩直線平行,內(nèi)錯角相等
),
∠CAD=∠E(
兩直線平行,同位角相等

又∵∠E=∠1(已知)
∴∠BAD=∠CAD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

23、如圖,AD⊥BC于D,EF⊥BC于E,∠1=∠2,AB與DG平行嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•義烏市)如圖,AD⊥BC于點D,D為BC的中點,連接AB,∠ABC的平分線交AD于點O,連結OC,若∠AOC=125°,則∠ABC=
70°
70°

查看答案和解析>>

同步練習冊答案