【題目】因式分解:a2+ab= .
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列運(yùn)算正確的是( )
A. 4a3·2a2=8a6 B. (-2x4)·(-3x4)=6x8
C. 5x3·3x4=8x7 D. (-x)·(-2x)2·(-3x)3=-108x6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,矩形的邊OA、OC分別落在x軸、y軸上,O為坐標(biāo)原點,且OA=8,OC=4,連接AC,將矩形OABC對折,使點A與點C重合,折痕ED與BC交于點D,交OA于點E,連接AD,如圖①.
(1)求點的坐標(biāo)和所在直線的函數(shù)關(guān)系式;
(2)的圓心始終在直線上(點除外),且始終與x軸相切,如圖②.
①求證: 與直線AD相切;
②圓心在直線AC上運(yùn)動,在運(yùn)動過程中,能否與y軸也相切?如果能相切,求出此時與x軸、y軸和直線AD都相切時的圓心的坐標(biāo);如果不能相切,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y= 的圖象交于A(﹣2,1),B(1,n)兩點.
(1)試確定上述反比例函數(shù)和一次函數(shù)的表達(dá)式;
(2)求△ABO的面積;
(3)根據(jù)圖象直接寫出當(dāng)一次函數(shù)的值大于反比例函數(shù)的值時x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明參加某個智力競答節(jié)目,答對最后兩道單選題就順利通關(guān).第一道單選題有3個選項,第二道單選題有4個選項,這兩道題小明都不會,不過小明還有一個“求助”沒有用(使用“求助”可以讓主持人去掉其中一題的一個錯誤選項).
(1)如果小明第一題不使用“求助”,那么小明答對第一道題的概率是 .
(2)如果小明將“求助”留在第二題使用,請用樹狀圖或者列表來分析小明順利通關(guān)的概率.
(3)從概率的角度分析,你建議小明在第幾題使用“求助”.(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某樓盤2018年初房價為每平方米20000元,經(jīng)過兩年連續(xù)降價后,2020 年初房價為16200元。設(shè)該樓盤這兩年房價年平均降低的百分率為x,根據(jù)題意可列方程為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列運(yùn)算正確的是( )
A.a2·a3=a6
B.(a2)3=a5
C.(-2a2b)3=-8a6b3
D.(2a+1)2=4a2+2a+1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC和△DEF是兩個邊長都為10cm的等邊三角形,且B、D、C、F都在同一條直線上,連接AD、CE.
(1)求證:四邊形ADEC是平行四邊形;
(2)若BD=4cm,△ABC沿著BF的方向以每秒1cm的速度運(yùn)動,設(shè)△ABC運(yùn)動的時間為t秒. ①當(dāng)點B勻動到D點時,四邊形ADEC的形狀是形;
②點B運(yùn)動過程中,四邊形ADEC有可能是矩形嗎?若可能,求出t的值;若不可能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某大樓的頂部樹有一塊廣告牌CD,小李在山坡的坡腳A處測得廣告牌底部D的仰角為60°.沿坡面AB向上走到B處測得廣告牌頂部C的仰角為45°,已知山坡AB的坡度i=1: ,AB=10米,AE=15米.(i=1: 是指坡面的鉛直高度BH與水平寬度AH的比)
(1)求點B距水平面AE的高度BH;
(2)求廣告牌CD的高度.
(測角器的高度忽略不計,結(jié)果精確到0.1米.參考數(shù)據(jù): ≈1.414, ≈1.732)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com