【題目】如圖,在平面直角坐標系中,已知點A(0,1),直線l:y=﹣1.動點P滿足條件:

①P在這個平面直角坐標系中;
②P到A的距離和P到l的距離相等;
(1)求點P所經(jīng)過的軌跡方程,并在網(wǎng)格中繪制這個圖象.(提示:平面直角坐標系中兩點之間的距離可以通過勾股定理來求得)
(2)已知直線y=kx+1,小明同學說,這條直線與(1)中所繪的圖象有兩個交點?你能說明小明為什么這么說嗎?
(3)經(jīng)過了上述的計算、繪圖,小明發(fā)現(xiàn),如果第(2)問的兩個交點分別為B、C,那么,過BC的中點M作直線l的垂線,垂足為H,連接BH、CH,所得到的三角形BCH是個特殊的三角形,你能說明它是什么三角形嗎?為什么?

【答案】
(1)

解:設P的坐標為P(x,y),由題意得: =|y+1|,

兩邊平方得:x2+(y﹣1)2=(y+1)2,

∴y= x2,即P的軌跡為一拋物線,其圖象如圖1所示;


(2)

解:拋物線直線方程聯(lián)立得 ,消去y可得x2﹣4kx﹣4=0,

∴△=16k2+16>0,

∴直線y=kx+1與拋物線有兩個交點;


(3)

解:如圖2,過B作BB′⊥l于B′,過C作CC′⊥l于C′,

由(1)中的條件可得BB′=BA,CC′=CA,

∴BC=BA+AC=BB′+CC′,

又由題意可得MH是梯形BB′C′C的中位線,

∴MH= (BB′+CC′)= BC,

∴MB=MC=MH,

∴△BHC是以∠BHC為直角的直角三角形.


【解析】(1)設出P點坐標,表示出P到A的距離和P到l的距離相等,可求得其軌跡方程,可畫出圖象;(2)聯(lián)立直線與拋物線解析式利用一元二次方程的判別式可判斷得出;(3)過B作BB′⊥l于B′,過C作CC′⊥l于C′,由條件可證明MH為梯形BB′C′C的中位線,可證得△BCH為直角三角形.
【考點精析】解答此題的關鍵在于理解二次函數(shù)的圖象的相關知識,掌握二次函數(shù)圖像關鍵點:1、開口方向2、對稱軸 3、頂點 4、與x軸交點 5、與y軸交點,以及對二次函數(shù)的性質(zhì)的理解,了解增減性:當a>0時,對稱軸左邊,y隨x增大而減。粚ΨQ軸右邊,y隨x增大而增大;當a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減。

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等腰直角三角形ABC中,∠ACB=90,AC=BC=4,DAB的中點,E,F分別是AC, BC上的點(點E不與端點A,C重合),且AE=CF,連接EF并取EF的中點O,連接DO并延長至點G,使GO=OD.連接DE, GE, GF.

(1)求證:四邊形EDFG是正方形;

(2)直接寫出四邊形EDFG面積的最小值和E點所在的位置.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了豐富少年兒童的業(yè)余生活,某社區(qū)要在如圖中的AB所在的直線上建一圖書室,本社區(qū)有兩所學校所在的位置在點C和點D處,CA⊥AB于A,DB⊥AB于B.已知AB=2.5km,CA=1.5km,DB=1.Okm,試問:圖書室E應該建在距點A多少km處,才能使它到兩所學校的距離相等?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算題
(1)20170﹣|﹣sin45°|cos45°+ ﹣(﹣ 1
(2)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AD是⊙O的切線,切點為A,AB是⊙O的弦.過點B作BC∥AD,交⊙O于點C,連接AC,過點C作CD∥AB,交AD于點D.連接AO并延長交BC于點M,交過點C的直線于點P,且∠BCP=∠ACD.
(1)判斷直線PC與⊙O的位置關系,并說明理由;
(2)若AB=9,BC=6.求PC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知A=2x2+3xy﹣2x﹣1,B=﹣x2+xy﹣1

1)求3A+6B;

2)若3A+6B的值與x無關,求y的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將一副三角板按如圖放置,則下列結論

①如果∠2=30°,則有ACDE;

②∠BAE+CAD =180°;

③如果BCAD,則有∠2=45°;

④如果∠CAD=150°,必有∠4=C;

正確的有( )

A. ①②③ B. ①②④ C. ①③④ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y1y2相交于點C(1,2),y1x軸交于點D,與y軸交于點(0,1);y2x軸交于點B(3,0),與y軸交于點A.下列說法正確的有_____________

①y1的解析式為y1=x+2②OA=OB③∠CDB=45°④△AOB≌△BCD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了解學生課余活動情況,某校對參加繪畫、書法、舞蹈、樂器這四個課外興趣小組的人員分布情況進行抽樣調(diào)查,并根據(jù)收集的數(shù)據(jù)繪制了下面兩幅不完整的統(tǒng)計圖,請根據(jù)圖中提供的信息,解答下面的問題:

(1)此次共調(diào)查了多少名同學?

(2)將條形圖補充完整,并計算扇形統(tǒng)計圖中書法部分的圓心角的度數(shù);

(3)如果該校共有1000名學生參加這4個課外興趣小組,而每個教師最多只能輔導本組的20名學生,估計每個興趣小組至少需要準備多少名教師?

查看答案和解析>>

同步練習冊答案