【題目】為培養(yǎng)學(xué)生數(shù)學(xué)學(xué)習(xí)興趣,某校七年級(jí)準(zhǔn)備開設(shè)“神奇魔方”、“魅力數(shù)獨(dú)”、“數(shù)學(xué)故事”、“趣題巧解”四門選修課(每位學(xué)生必須且只選其中一門).
(1)學(xué)校對(duì)七年級(jí)部分學(xué)生進(jìn)行選課調(diào)查,得到如圖所示的統(tǒng)計(jì)圖.根據(jù)統(tǒng)計(jì)圖,請(qǐng)估計(jì)該校七年級(jí)720名學(xué)生選“數(shù)學(xué)故事”的人數(shù).
(2)學(xué)校將“數(shù)學(xué)故事”的學(xué)生分成人數(shù)相等的A,B,C三個(gè)班,小聰、小慧都選擇了“數(shù)學(xué)故事”.已知小聰不在A班,求他與小慧被分到同一個(gè)班的概率.(要求列表或畫樹狀圖)
【答案】(1)135人;(2)
【解析】
(1)利用樣本估計(jì)總體,用720乘以樣本中選“數(shù)學(xué)故事”的人數(shù)所占的百分比即可估計(jì)該校七年級(jí)720名學(xué)生選“數(shù)學(xué)故事”的人數(shù);
(2)畫樹狀圖展示所有6種等可能的結(jié)果數(shù),再找出他和小慧被分到同一個(gè)班的結(jié)果數(shù),然后根據(jù)概率公式求解.
(1)(人).
答:估計(jì)該校七年級(jí)學(xué)生選“數(shù)學(xué)故事”的人數(shù)為135人.
故答案為:135人
(2)畫樹狀圖如下:
∵小聰和小慧被分到同一個(gè)班的情況有2種,所有可能的結(jié)果數(shù)有6種
∴P同班=
故答案為:
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司需要采購(gòu)A、B兩種筆記本,A種筆記本的單價(jià)高出B種筆記本的單價(jià)10元,并且花費(fèi)300元購(gòu)買A種筆記本和花費(fèi)100元購(gòu)買B種筆記本的數(shù)量相等.
(1)求A種筆記本和B種筆記本的單價(jià)各是多少元;
(2)該公司準(zhǔn)備采購(gòu)A、B兩種筆記本共80本,若A種筆記本的數(shù)量不少于60本,并且采購(gòu)A、B兩種筆記本的總費(fèi)用不高于1100元,那么該公司有 種購(gòu)買方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,圓O的半徑為3cm,B為圓O外一點(diǎn),OB交圓O于A,AB=OA,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以πcm/s的速度在圓O上按逆時(shí)針方向運(yùn)動(dòng)一周回到點(diǎn)A立即停止.當(dāng)點(diǎn)P運(yùn)動(dòng)的時(shí)間為( )秒時(shí),BP與圓O相切.
A.1sB.5sC.1s或 5sD.2s或 4s
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),過(guò)二次函數(shù)y=﹣x2+4x圖象上的點(diǎn)A(3,3)作x軸的垂線交x軸于點(diǎn)B.
(1)如圖1,P為線段OA上方拋物線上的一點(diǎn),在x軸上取點(diǎn)C(1,0),點(diǎn)M、N為y軸上的兩個(gè)動(dòng)點(diǎn),點(diǎn)M在點(diǎn)N的上方且MN=1.連接AC,當(dāng)四邊形PACO的面積最大時(shí),求PM+MNNO的最小值.
(2)如圖2,點(diǎn)Q(3,1)在線段AB上,作射線CQ,將△AQC沿直線AB翻折,C點(diǎn)的對(duì)應(yīng)點(diǎn)為C',將△AQC'沿射線CQ平移3個(gè)單位得△A'Q'C″,在射線CQ上取一點(diǎn)M,使得以A'、M、C″為頂點(diǎn)的三角形是等腰三角形,求M點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某數(shù)學(xué)興趣小組對(duì)函數(shù)y=x+的圖象和性質(zhì)進(jìn)行了探究,探究過(guò)程如下,請(qǐng)補(bǔ)充完整.
x | … | ﹣3 | ﹣2 | ﹣1 | - | - | 1 | 2 | 3 | … | ||
y | … | - | m | ﹣2 | - | - | 2 |
| … |
(1)自變量x的取值范圍是 ,m= .
(2)根據(jù)(1)中表內(nèi)的數(shù)據(jù),在如圖所示的平面直角坐標(biāo)系中描點(diǎn),畫出函數(shù)圖象的一部分,請(qǐng)你畫出該函數(shù)圖象的另一部分.
(3)請(qǐng)你根據(jù)函數(shù)圖象,寫出兩條該函數(shù)的性質(zhì);
(4)進(jìn)一步探究該函數(shù)的圖象發(fā)現(xiàn):
①方程x+=3有 個(gè)實(shí)數(shù)根;
②若關(guān)于x的方程x+=t有2個(gè)實(shí)數(shù)根,則t的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,正方形的邊長(zhǎng)為6,點(diǎn)分別在正半軸上,點(diǎn)在第一象限.點(diǎn)是正半軸上的一動(dòng)點(diǎn),且,連結(jié),將線段繞點(diǎn)順時(shí)針旋轉(zhuǎn)90度至,連結(jié),取中點(diǎn).
(1)當(dāng)時(shí),求與的坐標(biāo).
(2)如圖2,連結(jié),以、為鄰邊構(gòu)造平行四邊形記平行四邊形的面積為.
①用含的代數(shù)式表示
②當(dāng)落在的直角邊上時(shí),求的度數(shù).
(3)在(2)的條件下,連結(jié),記的面積為,若,則 (直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】由于霧霾天氣頻發(fā),市場(chǎng)上防護(hù)口罩出現(xiàn)熱銷,某醫(yī)藥公司每月固定生產(chǎn)甲、乙兩種型號(hào)的防霧霾口罩共20萬(wàn)只,且所有產(chǎn)品當(dāng)月全部售出,原料成本、銷售單價(jià)及工人生產(chǎn)提成如表:
甲 | 乙 | |
原料成本 | 12 | 8 |
銷售單價(jià) | 18 | 12 |
生產(chǎn)提成 | 1 | 0.8 |
(1)若該公司五月份的銷售收入為300萬(wàn)元,求甲、乙兩種型號(hào)的產(chǎn)品分別是多少萬(wàn)只?
(2)公司實(shí)行計(jì)件工資制,即工人每生產(chǎn)一只口罩獲得一定金額的提成,如果公司六月份投入總成本(原料總成本+生產(chǎn)提成總額)不超過(guò)239萬(wàn)元,應(yīng)怎樣安排甲、乙兩種型號(hào)的產(chǎn)量,可使該月公司所獲利潤(rùn)最大?并求出最大利潤(rùn)(利潤(rùn)=銷售收入﹣投入總成本)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c與x軸交于點(diǎn)A(﹣2,0),點(diǎn)B(4,0),與y軸交于點(diǎn)C(0,8),連接BC,又已知位于y軸右側(cè)且垂直于x軸的動(dòng)直線l,沿x軸正方向從O運(yùn)動(dòng)到B(不含O點(diǎn)和B點(diǎn)),且分別交拋物線、線段BC以及x軸于點(diǎn)P,D,E.
(1)求拋物線的表達(dá)式;
(2)連接AC,AP,當(dāng)直線l運(yùn)動(dòng)時(shí),求使得△PEA和△AOC相似的點(diǎn)P的坐標(biāo);
(3)作PF⊥BC,垂足為F,當(dāng)直線l運(yùn)動(dòng)時(shí),求Rt△PFD面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,將兩個(gè)完全相同的三角形紙片ABC和DEC重合放置,其中∠C=900,∠B=∠E=300.
(1)操作發(fā)現(xiàn)如圖2,固定△ABC,使△DEC繞點(diǎn)C旋轉(zhuǎn)。當(dāng)點(diǎn)D恰好落在BC邊上時(shí),填空:線段DE與AC的位置關(guān)系是 ;
② 設(shè)△BDC的面積為S1,△AEC的面積為S2。則S1與S2的數(shù)量關(guān)系是 。
(2)猜想論證
當(dāng)△DEC繞點(diǎn)C旋轉(zhuǎn)到圖3所示的位置時(shí),小明猜想(1)中S1與S2的數(shù)量關(guān)系仍然成立,并嘗試分別作出了△BDC和△AEC中BC,CE邊上的高,請(qǐng)你證明小明的猜想。
(3)拓展探究
已知∠ABC=600,點(diǎn)D是其角平分線上一點(diǎn),BD=CD=4,OE∥AB交BC于點(diǎn)E(如圖4),若在射線BA上存在點(diǎn)F,使S△DCF =S△BDC,請(qǐng)直接寫出相應(yīng)的BF的長(zhǎng)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com