【題目】(背景知識)研究平面直角坐標系,我們可以發(fā)現(xiàn)一條重要的規(guī)律:若平面直角坐標系上有兩個不同的點、,則線段AB的中點坐標可以表示為
(簡單應用)如圖1,直線AB與y軸交于點,與x軸交于點,過原點O的直線L將分成面積相等的兩部分,請求出直線L的解析式;
(探究升級)小明發(fā)現(xiàn)“若四邊形一條對角線平分四邊形的面積,則這條對角線必經過另一條對角線的中點”
如圖2,在四邊形ABCD中,對角線AC、BD相交于點O,試說明;
(綜合運用)如圖3,在平面直角坐標系中,,,若OC恰好平分四邊形OACB的面積,求點C的坐標.
【答案】[簡單應用][探究升級][綜合運用]
【解析】
簡單應用:先判斷出直線L過線段AB的中點,再求出線段AB的中點,最后用待定系數法即可得出結論;
探究升級:先判斷出,進而判斷出≌,即可得出結論;
綜合運用:借助“探究升級”的結論判斷出直線OC過線段AB的中點,進而求出直線OC的解析式,最后將點C坐標代入即可得出結論.
解:簡單應用:
直線L將分成面積相等的兩部分,
直線L必過相等AB的中點,
設線段AB的中點為E,
,,
,
,
直線L過原點,
設直線L的解析式為,
,
,
直線L的解析式為;
探究升級:
如圖2,
過點A作于F,過點C作于G,
,,
,
,
,
在和中,
,
≌,
;
綜合運用:如圖3,
由探究升級知,若四邊形一條對角線平分四邊形的面積,則這條對角線必經過另一條對角線的中點,
恰好平分四邊形OACB的面積,
過四邊形OACB的對角線OA的中點,
連接AB,設線段AB的中點為H,
,,
,設直線OC的解析式為,,
,
,
直線OC的解析式為,
點在直線OC上,
,
,
科目:初中數學 來源: 題型:
【題目】如圖所示,已知∠1+∠2=180°,∠3=∠B,
求證:∠AED=∠ACB.
證明:∠1+∠2=180°(已知),∠1+∠4=180°( ),
∴∠2= ( ),
∴AB∥EF( ),
∴∠3= ( ),
∵∠3=∠B(已知),
∴∠B= (等量代換),
∴DE∥BC( ),
∴∠AED=∠ACB( ).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)如圖1,若AB∥CD,則∠B+∠D=∠E,你能說明理由嗎?
(2)反之,若∠B+∠D=∠E,直線AB與CD有什么位置關系?
(3)若將點E移至圖2的位置,此時∠B,∠D,∠E之間有什么關系?
(4)若將點E移至圖3的位置,此時∠B,∠D,∠E之間的關系又如何?
(5)在圖4中,AB∥CD,∠E+∠G與∠B+∠F+∠D之間有何關系?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD中,AD平行BC,∠ABC=90°,AD=2,AB=6,以AB為直徑的半⊙O 切CD于點E,F(xiàn)為弧BE上一動點,過F點的直線MN為半⊙O的切線,MN交BC于M,交CD于N,則△MCN的周長為( 。
A.9
B.10
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形ABCD邊長為4cm,以正方形的一邊BC為直徑在正方形ABCD內作半圓,過A作半圓的切線,與半圓相切于F點,與DC相交于E點,則△ADE的面積( )
A.12
B.24
C.8
D.6
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:在平面直角坐標系中,點A、B的坐標分別是(a,0),(b,0)且+|b-2|=0.
(1)求a、b的值;
(2)在y軸上是否存在點C,使三角形ABC的面積是12?若存在,求出點C的坐標;若不存在,請說明理由.
(3)已知點P是y軸正半軸上一點,且到x軸的距離為3,若點P沿平行于x軸的負半軸方向以每秒1個單位長度平移至點Q,當運動時間t為多少秒時,四邊形ABPQ的面積S為15個平方單位?寫出此時點Q的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,數學實踐活動小組要測量學校附近樓房CD的高度,在水平地面A處安置測傾器測得樓房CD頂部點D的仰角為45°,向前走20米到達A′處,測得點D的仰角為67.5°,已知測傾器AB的高度為1.6米,則樓房CD的高度約為(結果精確到0.1米, ≈1.414)( )
A.34.14米
B.34.1米
C.35.7米
D.35.74米
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線與x軸交于點(﹣1,0)和(3,0),與y軸交于點(0,﹣3)則此拋物線對此函數的表達式為( )
A.y=x2+2x+3
B.y=x2﹣2x﹣3
C.y=x2﹣2x+3
D.y=x2+2x﹣3
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點C是⊙O上一點,AD與過點C的切線垂直,垂足為點D,直線DC與AB的延長線相交于點P,CE平分∠ACB,交AB于點E.
(1)求證:AC平分∠DAB;
(2)求證:△PCE是等腰三角形.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com