精英家教網 > 初中數學 > 題目詳情

【題目】(背景知識)研究平面直角坐標系,我們可以發(fā)現(xiàn)一條重要的規(guī)律:若平面直角坐標系上有兩個不同的點、,則線段AB的中點坐標可以表示為

(簡單應用)如圖1,直線ABy軸交于點,與x軸交于點,過原點O的直線L分成面積相等的兩部分,請求出直線L的解析式;

(探究升級)小明發(fā)現(xiàn)若四邊形一條對角線平分四邊形的面積,則這條對角線必經過另一條對角線的中點

如圖2,在四邊形ABCD中,對角線AC、BD相交于點O,試說明

(綜合運用)如圖3,在平面直角坐標系中,,若OC恰好平分四邊形OACB的面積,求點C的坐標.

【答案】[簡單應用][探究升級][綜合運用]

【解析】

簡單應用:先判斷出直線L過線段AB的中點,再求出線段AB的中點,最后用待定系數法即可得出結論;

探究升級:先判斷出,進而判斷出,即可得出結論;

綜合運用:借助“探究升級”的結論判斷出直線OC過線段AB的中點,進而求出直線OC的解析式,最后將點C坐標代入即可得出結論.

解:簡單應用:

直線L分成面積相等的兩部分,

直線L必過相等AB的中點,

設線段AB的中點為E

,

,

,

直線L過原點,

設直線L的解析式為,

,

直線L的解析式為

探究升級:

如圖2,

過點AF,過點CG,

,

,

,

中,

,

;

綜合運用:如圖3,

由探究升級知,若四邊形一條對角線平分四邊形的面積,則這條對角線必經過另一條對角線的中點,

恰好平分四邊形OACB的面積,

過四邊形OACB的對角線OA的中點,

連接AB,設線段AB的中點為H

,

,設直線OC的解析式為,

,

,

直線OC的解析式為,

在直線OC上,

,

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖所示,已知∠1+2=180°,∠3=B,

求證:∠AED=ACB

證明:∠1+2=180°(已知),∠1+4=180° ),

∴∠2= ),

ABEF ),

∴∠3= ),

∵∠3=B(已知),

∴∠B= (等量代換),

DEBC ),

∴∠AED=ACB ).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】(1)如圖1,若AB∥CD,則∠B+∠D=∠E,你能說明理由嗎?

(2)反之,若∠B+∠D=∠E,直線AB與CD有什么位置關系?

(3)若將點E移至圖2的位置,此時∠B,∠D,∠E之間有什么關系?

(4)若將點E移至圖3的位置,此時∠B,∠D,∠E之間的關系又如何?

(5)在圖4中,AB∥CD,∠E+∠G與∠B+∠F+∠D之間有何關系?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,四邊形ABCD中,AD平行BC,∠ABC=90°,AD=2,AB=6,以AB為直徑的半⊙O 切CD于點E,F(xiàn)為弧BE上一動點,過F點的直線MN為半⊙O的切線,MN交BC于M,交CD于N,則△MCN的周長為( 。

A.9
B.10
C.
D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,正方形ABCD邊長為4cm,以正方形的一邊BC為直徑在正方形ABCD內作半圓,過A作半圓的切線,與半圓相切于F點,與DC相交于E點,則△ADE的面積(  )

A.12
B.24
C.8
D.6

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:在平面直角坐標系中,點A、B的坐標分別是(a,0),(b,0)且+|b-2|=0.
(1)求a、b的值;
(2)在y軸上是否存在點C,使三角形ABC的面積是12?若存在,求出點C的坐標;若不存在,請說明理由.
(3)已知點P是y軸正半軸上一點,且到x軸的距離為3,若點P沿平行于x軸的負半軸方向以每秒1個單位長度平移至點Q,當運動時間t為多少秒時,四邊形ABPQ的面積S為15個平方單位?寫出此時點Q的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,數學實踐活動小組要測量學校附近樓房CD的高度,在水平地面A處安置測傾器測得樓房CD頂部點D的仰角為45°,向前走20米到達A′處,測得點D的仰角為67.5°,已知測傾器AB的高度為1.6米,則樓房CD的高度約為(結果精確到0.1米, ≈1.414)( )

A.34.14米
B.34.1米
C.35.7米
D.35.74米

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,拋物線與x軸交于點(﹣1,0)和(3,0),與y軸交于點(0,﹣3)則此拋物線對此函數的表達式為( )

A.y=x2+2x+3
B.y=x2﹣2x﹣3
C.y=x2﹣2x+3
D.y=x2+2x﹣3

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點C是⊙O上一點,AD與過點C的切線垂直,垂足為點D,直線DC與AB的延長線相交于點P,CE平分∠ACB,交AB于點E.

(1)求證:AC平分∠DAB;
(2)求證:△PCE是等腰三角形.

查看答案和解析>>

同步練習冊答案