【題目】元旦聯(lián)歡會前,班級買了甲、乙、丙三種筆記本作為獎品,共買了本,花了元,其中乙種筆記本數(shù)量是甲種筆記本數(shù)量的倍,已知甲種筆記本單價為元,乙種筆記本單價為元,丙種筆記本單價為元.

求甲、乙、丙三種筆記本各買了多少本?

若購買獎品的費用又增加了元,且購買獎品的總數(shù)量及購買乙種筆記本數(shù)量不變,則最多可以購買甲型筆記本多少本?

【答案】1)甲、乙、丙三種筆記本的數(shù)量分別為5本,10本,15本.(2)最多可以購買11本甲種筆記本.

【解析】

1)設(shè)甲種筆記本買了本,乙種筆記本買了本,根據(jù)題意,列出二元一次方程組即可求出結(jié)論;

2)設(shè)購買甲種筆記本本,根據(jù)題意列出一元一次不等式即可求出結(jié)論.

1)解:設(shè)甲種筆記本買了本,乙種筆記本買了本,列方程組

解得

∴丙種:30-5-10=15,

答:甲、乙、丙三種筆記本的數(shù)量分別為5本,10本,15本.

2)設(shè)購買甲種筆記本本,

≤100+25

解得,

為整數(shù),

的最大值為11

答:最多可以購買11本甲種筆記本.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,分別是正方形的邊的中點,以為邊作正方形 交于點,聯(lián)結(jié)

1)求證:

2)設(shè),求證

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場舉辦抽獎活動,規(guī)則如下:在不透明的袋子中有2個紅球和2個黑球,這些球除顏色外都相同,顧客每次摸出一個球,若摸到紅球,則獲得1份獎品,若摸到黑球,則沒有獎品。

1)如果小芳只有一次摸球機(jī)會,那么小芳獲得獎品的概率為  ;

2)如果小芳有兩次摸球機(jī)會(摸出后不放回),求小芳獲得2份獎品的概率。(請用畫樹狀圖列表等方法寫出分析過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)數(shù)學(xué)興趣小組在一次課外學(xué)習(xí)與探究中遇到一些新的數(shù)學(xué)符號,他們將其中某些材料摘錄如下:

對于三個實,數(shù),,,用表示這三個數(shù)的平均數(shù),用表示這三個數(shù)中最小的數(shù),例如=4,,.請結(jié)合上述材料,解決下列問題:

1)①_____,

_____;

2)若,則的取值范圍為_____

3)若,求的值;

4)如果,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形是菱形,,點點出發(fā),沿運動,過點作直線的垂線,垂足為,設(shè)點運動的路程為,的面積為,則下列圖象能正確反映之間的函數(shù)關(guān)系的是( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,直線軸、軸分別交于兩點,將沿軸正方向平移后,點、點的對應(yīng)點分別為點、點,且四邊形為菱形,連接,拋物線經(jīng)過三點,點上方拋物線上一動點,作,垂足為

求此拋物線的函數(shù)關(guān)系式;

求線段長度的最大值;

如圖②,延長軸于點,連接,若為等腰三角形,請直接寫出點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若二次函數(shù)圖象的頂點在一次函數(shù)的圖象上,則稱的中雅函數(shù),如:的中雅函數(shù).

(1)判斷二次函數(shù)是否為一次函數(shù)的中雅函數(shù),并說明理由;

(2)若關(guān)于的一次函數(shù)的中雅函數(shù)軸兩個交點間的距離為,求直線與坐標(biāo)軸所圍三角形的面積;

(3)已知關(guān)于的一次函數(shù)的中雅函數(shù)為,與平行的直線交中雅函數(shù)的圖象于兩點,若軸上有且僅有一個點,使得,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】李老師每天要騎車到離家15千米的單位上班,若將速度提高原來的,則時間可縮短15分鐘.

1)求李老師原來的速度為多少千米/時;

2)李老師按照原來的速度騎車到途中的A地,發(fā)現(xiàn)公文包忘在家里,他立即提速1倍回到家里取公文包(其他時間忽略不計),并且以返回時的速度趕往單位,若李老師到單位的時間不超過平時到校的時間,求A地距家最多多少千米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,頂點坐標(biāo)分別為:.線段的端點坐標(biāo)為

線段先向 平移 個單位,再向 平移_ 個單位與線段重合;

繞點旋轉(zhuǎn)后得到的使的對應(yīng)邊為直接寫出點的坐標(biāo);

寫出點在旋轉(zhuǎn)過程中所經(jīng)過的路徑的長.

查看答案和解析>>

同步練習(xí)冊答案