【題目】給定關(guān)于 的二次函數(shù) ,
學生甲:當 時,拋物線與 軸只有一個交點,因此當拋物線與 軸只有一個交點時, 的值為3;
學生乙:如果拋物線在 軸上方,那么該拋物線的最低點一定在第二象限;
請判斷學生甲、乙的觀點是否正確,并說明你的理由.

【答案】解:甲的觀點是錯誤的.
理由如下:當拋物線 軸只有一個交點時

即:
解得
時拋物線 軸只有一個交點
乙的觀點是正確的
理由如下:當拋物線在 軸上方時,
由上可得
即:

而對于開口向上的拋物線最低點為其頂點
頂點的橫坐標為

,且拋物線在 軸上方,
即拋物線的最低點在第二象限
【解析】根據(jù)拋物線與 x 軸只有一個交點,得到-4ac=0,可計算m的值,確定甲的觀點是錯誤的.根據(jù)拋物線在 x 軸上方,得到-4ac0,m的范圍可求出,拋物線的最低點的位置即可確定。

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直角坐標系中,△ABC的頂點都在網(wǎng)格點上,其中,C點坐標為(1,2),

1)寫出點A、B的坐標:A__________)、B_____,_____);

2)將△ABC先向左平移2個單位長度,再向上平移1個單位長度,得到△ABC′,寫出A′、B′、C′三點坐標;

3)求△ABC的面積。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】問題的提出:

如果點是銳角內(nèi)一動點,如何確定一個位置,使點到△ABC的三頂點的距離之和的值為最小?

1)問題的轉(zhuǎn)化:

繞點逆時針旋轉(zhuǎn)得到,連接,這樣就把確定的最小值的問題轉(zhuǎn)化成確定的最小值的問題了,請你利用圖1證明:

2)問題的解決:

當點到銳角的三頂點的距離之和的值為最小時,求的度數(shù).

問題的延伸:

3)如圖2所示,在鈍角中,,,,點是這個三角形內(nèi)一動點,請你利用以上方法,求點到這個三角形各頂點的距離之和的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知菱形ABCD的對角線相交于點O,延長AB至點E,使BE=AB,連結(jié)CE.

(1)求證:BD=EC;
(2)若AC=2, , 求菱形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,CBOA,∠C=OAB=124°,E、FCB上,且滿足∠FOB=AOB,OE平分∠COF,∠OEC=COB,則∠OEC=______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2020年擬繼續(xù)舉辦麗水市中學生漢字聽寫、詩詞誦寫大賽.經(jīng)過初賽、復賽,選出了兩個代表隊參加市內(nèi)7月份的決賽.兩個隊各選出的名選手的復賽成績?nèi)鐖D所示.

1)根據(jù)圖示補全下表;

平均數(shù)()

中位數(shù)()

眾數(shù)()

2)結(jié)合兩隊成績的平均數(shù)和中位數(shù),分析哪個隊的復賽成績較好;

3)計算兩隊成績的方差,并判斷哪一個代表隊選手成績較為穩(wěn)定.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】先化簡,再求值:(x﹣1+ )÷ ,其中x的值從不等式組 的整數(shù)解中選。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】用正方形硬紙板做三棱柱盒子,每個盒子由3個矩形側(cè)面和2個正三角形底面組成,硬紙板以如圖兩種方法裁剪(裁剪后邊角料不再利用)

A方法:剪6個側(cè)面;

B方法:剪4個側(cè)面和5個底面.

現(xiàn)有38張硬紙板,裁剪時x張用A方法,其余用B方法.

(1)用x的代數(shù)式分別表示裁剪出的側(cè)面和底面的個數(shù);

(2)若裁剪出的側(cè)面和底面恰好全部用完,則能做多少個盒子?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖OA平分∠BAC,∠1=2

求證:AOBC

同學甲說:要作輔助線;

同學乙說:要應用角平分線性質(zhì)定理來解決:

同學丙說:要應用等腰三角形“三線合一”的性質(zhì)定理來解決.

請你結(jié)合同學們的討論寫出證明過程.

查看答案和解析>>

同步練習冊答案