【題目】給定關(guān)于 的二次函數(shù) ,
學生甲:當 時,拋物線與 軸只有一個交點,因此當拋物線與 軸只有一個交點時, 的值為3;
學生乙:如果拋物線在 軸上方,那么該拋物線的最低點一定在第二象限;
請判斷學生甲、乙的觀點是否正確,并說明你的理由.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直角坐標系中,△ABC的頂點都在網(wǎng)格點上,其中,C點坐標為(1,2),
(1)寫出點A、B的坐標:A(_____,_____)、B(_____,_____);
(2)將△ABC先向左平移2個單位長度,再向上平移1個單位長度,得到△A′B′C′,寫出A′、B′、C′三點坐標;
(3)求△ABC的面積。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】問題的提出:
如果點是銳角內(nèi)一動點,如何確定一個位置,使點到△ABC的三頂點的距離之和的值為最小?
(1)問題的轉(zhuǎn)化:
把繞點逆時針旋轉(zhuǎn)得到,連接,這樣就把確定的最小值的問題轉(zhuǎn)化成確定的最小值的問題了,請你利用圖1證明:.
(2)問題的解決:
當點到銳角的三頂點的距離之和的值為最小時,求的度數(shù).
問題的延伸:
(3)如圖2所示,在鈍角中,,,,點是這個三角形內(nèi)一動點,請你利用以上方法,求點到這個三角形各頂點的距離之和的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知菱形ABCD的對角線相交于點O,延長AB至點E,使BE=AB,連結(jié)CE.
(1)求證:BD=EC;
(2)若AC=2, , 求菱形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,CB∥OA,∠C=∠OAB=124°,E、F在CB上,且滿足∠FOB=∠AOB,OE平分∠COF,∠OEC=∠COB,則∠OEC=______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2020年擬繼續(xù)舉辦麗水市中學生漢字聽寫、詩詞誦寫大賽.經(jīng)過初賽、復賽,選出了兩個代表隊參加市內(nèi)7月份的決賽.兩個隊各選出的名選手的復賽成績?nèi)鐖D所示.
(1)根據(jù)圖示補全下表;
平均數(shù)(分) | 中位數(shù)(分) | 眾數(shù)(分) | |
隊 | |||
隊 |
(2)結(jié)合兩隊成績的平均數(shù)和中位數(shù),分析哪個隊的復賽成績較好;
(3)計算兩隊成績的方差,并判斷哪一個代表隊選手成績較為穩(wěn)定.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】用正方形硬紙板做三棱柱盒子,每個盒子由3個矩形側(cè)面和2個正三角形底面組成,硬紙板以如圖兩種方法裁剪(裁剪后邊角料不再利用)
A方法:剪6個側(cè)面;
B方法:剪4個側(cè)面和5個底面.
現(xiàn)有38張硬紙板,裁剪時x張用A方法,其余用B方法.
(1)用x的代數(shù)式分別表示裁剪出的側(cè)面和底面的個數(shù);
(2)若裁剪出的側(cè)面和底面恰好全部用完,則能做多少個盒子?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖OA平分∠BAC,∠1=∠2.
求證:AO⊥BC.
同學甲說:要作輔助線;
同學乙說:要應用角平分線性質(zhì)定理來解決:
同學丙說:要應用等腰三角形“三線合一”的性質(zhì)定理來解決.
請你結(jié)合同學們的討論寫出證明過程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com