【題目】已知:甲、乙兩車分別從相距200千米的,兩地同時(shí)出發(fā)相向而行,其中甲車到地后立即返回,下圖是它們離各自出發(fā)地的距離(千米)與行駛時(shí)間(小時(shí))之間的函數(shù)圖象.
(1)求甲車離出發(fā)地的距離(千米)與行駛時(shí)間(小時(shí))之間的函數(shù)關(guān)系式,并寫(xiě)出自變量的取值范圍.
(2)當(dāng)時(shí),甲、乙兩車離各自出發(fā)地的距離相等,求乙車離出發(fā)地的距離(千米)與行駛時(shí)間(小時(shí))之間的函數(shù)關(guān)系式,并寫(xiě)出自變量的取值范圍.
(3)在(2)的條件下,求它們?cè)谛旭偟倪^(guò)程中相遇的時(shí)間.
【答案】(1);(2);(3)經(jīng)過(guò)或4小時(shí),甲、乙兩車相遇
【解析】
(1)根據(jù)圖象可知,分0≤x≤2,2<x≤兩段,利用待定系數(shù)法求出一次函數(shù)解析式;
(2)根據(jù)(1)中所求解析式求出兩直線的交點(diǎn)坐標(biāo),再利用待定系數(shù)法求出乙車離出發(fā)地的距離y(千米)與行駛時(shí)間x(小時(shí))之間的函數(shù)關(guān)系式;
(3)分0≤x≤2,2<x≤兩種情況,分別列出方程求解即可.
解:(1)當(dāng)0≤x≤2時(shí),設(shè)y=mx,
則2m=200,解得m=100,
所以,y=100x;
當(dāng)2<x≤時(shí),設(shè)y=kx+b,
則,解得,
∴y=-80x+360,
∴甲車離出發(fā)地的距離y(千米)與行駛時(shí)間x(小時(shí))之間的函數(shù)關(guān)系式為: ;
(2)當(dāng)x=3時(shí),y甲=-80×3+360=120,
即兩函數(shù)圖象交點(diǎn)的坐標(biāo)為(3,120),
設(shè)y乙=px,
將(3,120)代入,得3p=120,
解得:p=40,
∴乙車離出發(fā)地的距離y(千米)與行駛時(shí)間x(小時(shí))之間的函數(shù)關(guān)系式為:y乙=40x(0≤x≤5);
(3)①當(dāng)時(shí),由題意得:,
解得:;
②當(dāng)時(shí),由題意得:,
解得:,
∴經(jīng)過(guò)或4小時(shí),甲、乙兩車相遇.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB、CD是半徑為5的⊙O的兩條弦,AB=8,CD=6,MN是直徑,AB⊥MN于點(diǎn)E,CD⊥MN于點(diǎn)F,P為EF上的任意一點(diǎn),則PA+PC的最小值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】列方程解應(yīng)用題:
某玩具廠生產(chǎn)一種玩具,按照控制固定成本降價(jià)促銷的原則,使生產(chǎn)的玩具能夠及時(shí)售出,據(jù)市場(chǎng)調(diào)查:每個(gè)玩具按元銷售時(shí),每天可銷售個(gè);若銷售單價(jià)每降低元,每天可多售出個(gè).已知每個(gè)玩具的固定成本為元,問(wèn)這種玩具的銷售單價(jià)為多少元時(shí),廠家每天可獲利潤(rùn)元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)為Q(2,﹣1),且與y軸交于點(diǎn)C(0,3),與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的右側(cè)),點(diǎn)P是拋物線上的一動(dòng)點(diǎn),從點(diǎn)C沿拋物線向點(diǎn)A運(yùn)動(dòng)(點(diǎn)P與A不重合),過(guò)點(diǎn)P作PD∥y軸,交AC于點(diǎn) D.
(1)求該拋物線的函數(shù)關(guān)系式及A、B兩點(diǎn)的坐標(biāo);
(2)求點(diǎn)P在運(yùn)動(dòng)的過(guò)程中,線段PD的最大值;
(3)若點(diǎn)P與點(diǎn)Q重合,點(diǎn)E在x軸上,點(diǎn)F在拋物線上,問(wèn)是否存在以A,P,E,F(xiàn)為頂點(diǎn)的平行四邊形?若存在,直接寫(xiě)出點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分12分)
已知:把Rt△ABC和Rt△DEF按如圖(1)擺放(點(diǎn)C與點(diǎn)E重合),點(diǎn)B、C(E)、F在同一條直線上.∠ACB = ∠EDF = 90°,∠DEF = 45°,AC = 8 cm,BC = 6 cm,EF = 9 cm.
如圖(2),△DEF從圖(1)的位置出發(fā),以1 cm/s的速度沿CB向△ABC勻速移動(dòng),在△DEF移動(dòng)的同時(shí),點(diǎn)P從△ABC的頂點(diǎn)B出發(fā),以2 cm/s的速度沿BA向點(diǎn)A勻速移動(dòng).當(dāng)△DEF的頂點(diǎn)D移動(dòng)到AC邊上時(shí),△DEF停止移動(dòng),點(diǎn)P也隨之停止移動(dòng).DE與AC相交于點(diǎn)Q,連接PQ,設(shè)移動(dòng)時(shí)間為t(s)(0<t<4.5).
解答下列問(wèn)題:
(1)當(dāng)t為何值時(shí),點(diǎn)A在線段PQ的垂直平分線上?
(2)連接PE,設(shè)四邊形APEC的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式;是否存在某一時(shí)刻t,使面積y最小?若存在,求出y的最小值;若不存在,說(shuō)明理由.
(3)是否存在某一時(shí)刻t,使P、Q、F三點(diǎn)在同一條直線上?若存在,求出此時(shí)t的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知⊙O的直徑AB=10,弦AC=6,∠BAC的平分線交⊙O于點(diǎn)D,過(guò)點(diǎn)D作DE⊥AC交AC的延長(zhǎng)線于點(diǎn)E.
(1)求證:DE是⊙O的切線.
(2)求DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形ABCD中,∠B=60°,BC=6,E為BC中點(diǎn),F是AB上一點(diǎn),G為AD上一點(diǎn),且BF=2,∠FEG=60°,EG交AC于點(diǎn)H,下列結(jié)論:①△BEF∽△CHE;②AG=1;③EH=;④S△BEF=3S△AGH;正確的是______.(填序號(hào)即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,取一根9.5 m長(zhǎng)的標(biāo)桿AB,在其上系一活動(dòng)旗幟C,使標(biāo)桿的影子落在平地和一堤壩的左斜坡上,拉動(dòng)旗幟使其影子正好落在斜坡底角頂點(diǎn)D處.若測(cè)得旗高BC=4.5 m,影長(zhǎng)BD=9 m,影長(zhǎng)DE=5 m,請(qǐng)計(jì)算左斜坡的坡比(假設(shè)標(biāo)桿的影子BD,DE均與壩底線DM垂直).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)在某次考試中,現(xiàn)有甲、乙、丙3名同學(xué),共四科測(cè)試實(shí)際成績(jī)?nèi)缦卤恚海▎挝唬悍郑?/span>
語(yǔ)文 | 數(shù)學(xué) | 英語(yǔ) | 科學(xué) | |
甲 | 95 | 95 | 80 | 150 |
乙 | 105 | 90 | 90 | 139 |
丙 | 100 | 100 | 85 | 139 |
若欲從中表?yè)P(yáng)2人,請(qǐng)你從平均數(shù)的角度分析,那兩人將被表?yè)P(yáng)?
(2)為了提現(xiàn)科學(xué)差異,參與測(cè)試的語(yǔ)文、數(shù)學(xué)、英語(yǔ)、科學(xué)實(shí)際成績(jī)須以2:3:2:3的比例計(jì)入折合平均數(shù),請(qǐng)你從折合平均數(shù)的角度分析,哪兩人將被表?yè)P(yáng)?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com