【題目】如圖,ABCD是矩形紙片,翻折∠B,∠D,使AD,BC邊與對角線AC重疊,且頂點B,D恰好落在同一點O上,折痕分別是CE,AF,則等于( 。
A.
B.2
C.1.5
D.
【答案】B
【解析】解:∵ABCD是矩形,
∴AD=BC,∠B=90°,
∵翻折∠B,∠D,使AD,BC邊與對角線AC重疊,且頂點B,D恰好落在同一點O上,
∴AO=AD,CO=BC,∠AOE=∠COF=90°,
∴AO=CO,AC=AO+CO=AD+BC=2BC,
∴∠CAB=30°,
∴∠ACB=60°,
∴∠BCE=,
∴BE=
∵AB∥CD,
∴∠OAE=∠FCO,
在△AOE和△COF中,
∴△AOE≌△COF,
∴OE=OF,
∴EF與AC互相垂直平分,
∴四邊形AECF為菱形,
∴AE=CE,
∴BE=,
∴,
故選:B.
【考點精析】本題主要考查了翻折變換(折疊問題)的相關知識點,需要掌握折疊是一種對稱變換,它屬于軸對稱,對稱軸是對應點的連線的垂直平分線,折疊前后圖形的形狀和大小不變,位置變化,對應邊和角相等才能正確解答此題.
科目:初中數學 來源: 題型:
【題目】如圖,已知△ABC的三個頂點的坐標分別為A(﹣2,2)、B(﹣5,0)、C(﹣1,0),P(a,b)是△ABC的邊AC上一點:
(1)將△ABC繞原點O逆時針旋轉90°得到△A1B1C1 , 請在網格中畫出△A1B1C1 , 旋轉過程中點A所走的路徑長為 .
(2)將△ABC沿一定的方向平移后,點P的對應點為P2(a+6,b+2),請在網格畫出上述平移后的△A2B2C2 , 并寫出點A2的坐標:A2().
(3)若以點O為位似中心,作△A3B3C3與△ABC成2:1的位似,則與點P對應的點P3位似坐標為(直接寫出結果).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】現有甲、乙兩個容器,分別裝有進水管和出水管,兩容器的進出水速度不變,先打開乙容器的進水管,2分鐘時再打開甲容器的進水管,又過2分鐘關閉甲容器的進水管,再過4分鐘同時打開甲容器的進、出水管.直到12分鐘時,同時關閉兩容器的進出水管.打開和關閉水管的時間忽略不計.容器中的水量y(升)與乙容器注水時間x(分)之間的關系如圖所示.
(1)求甲容器的進、出水速度.
(2)甲容器進、出水管都關閉后,是否存在兩容器的水量相等?若存在,求出此時的時間.
(3)若使兩容器第12分鐘時水量相等,則乙容器6分鐘后進水速度應變?yōu)槎嗌伲?/span>
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=5,AD=3,點P是AB邊上一點(不與A,B重合),連接CP,過點P作PQ⊥CP交AD邊于點Q,連接CQ.
(1)當△CDQ≌△CPQ時,求AQ的長;
(2)取CQ的中點M,連接MD,MP,若MD⊥MP,求AQ的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某企業(yè)招聘員工,要求所要應聘者都要經過筆試與面試兩種考核,且按考核總成績從高到低進行錄取,如果考核總成績相同時,則優(yōu)先錄取面試成績高分者.下面是招聘考和總成績的計算說明:
筆試總成績=(筆試總成績+加分)÷2
考和總成績=筆試總成績+面試總成績
現有甲、乙兩名應聘者,他們的成績情況如下:
應聘者 | 成績 | ||
筆試成績 | 加分 | 面試成績 | |
甲 | 117 | 3 | 85.6 |
乙 | 121 | 0 | 85.1 |
(1)甲、乙兩人面試的平均成績?yōu)?/span> ;
(2)甲應聘者的考核總成績?yōu)?/span> ;
(3)根據上表的數據,若只應聘1人,則應錄取 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】青少年“心理健康”問題越來越引起社會的關注,某中學為了了解學校600名學生的心理健康狀況,舉行了一次“心理健康”知識測試,并隨即抽取了部分學生的成績(得分取正整數,滿分為100分)作為樣本,繪制了下面未完成的頻率分布表和頻率分布直方圖.請回答下列問題:
分組 | 頻數 | 頻率 |
50.5~60.5 | 4 | 0.08 |
60.5~70.5 | 14 | 0.28 |
70.5~80.5 | 16 |
|
80.5~90.5 |
|
|
90.5~100.5 | 10 | 0.20 |
合計 |
| 1.00 |
(1)填寫頻率分布表中的空格,并補全頻率分布直方圖;
(2)若成績在70分以上(不含70分)為心理健康狀況良好,同時,若心理健康狀況良好的人數占總人數的70%以上,就表示該校學生的心理健康狀況正常,否則就需要加強心里輔導.請根據上述數據分析該校學生是否需要加強心里輔導,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,∠ABC的平分線交AC于點D,點O是AB上一點,⊙O過B、D兩點,且分別交AB、BC于點E、F.
(1)求證:AC是⊙O的切線;
(2)已知AB=10,BC=6,求⊙O的半徑r.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com