【題目】如圖,某建筑物BC上有一旗桿AB,從與BC相距38m的D處觀測(cè)旗桿頂部A的仰角為50°,觀測(cè)旗桿底部B的仰角為45°,則旗桿的高度約為 m.(結(jié)果精確到0.1m,參考數(shù)據(jù):sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)

【答案】7.2
【解析】解:根據(jù)題意得:EF⊥AC,CD∥FE,
∴四邊形CDEF是矩形,
已知底部B的仰角為45°即∠BEF=45°,
∴∠EBF=45°,
∴CD=EF=FB=38,
在Rt△AEF中,
AF=EFtan50°=38×1.19≈45.22
∴AB=AF﹣BF=45.22﹣38≈7.2,
∴旗桿的高約為7.2米.
故答案為:7.2.

根據(jù)題意分別在兩個(gè)直角三角形中求得AF和BF的長(zhǎng)后求差即可得到旗桿的高度.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在矩形ABCD中,動(dòng)點(diǎn)E從A出發(fā),沿AB→BC方向運(yùn)動(dòng),當(dāng)點(diǎn)E到達(dá)點(diǎn)C時(shí)停止運(yùn)動(dòng),過(guò)點(diǎn)E做FE⊥AE,交CD于F點(diǎn),設(shè)點(diǎn)E運(yùn)動(dòng)路程為x,F(xiàn)C=y,如圖2所表示的是y與x的函數(shù)關(guān)系的大致圖象,當(dāng)點(diǎn)E在BC上運(yùn)動(dòng)時(shí),F(xiàn)C的最大長(zhǎng)度是 ,則矩形ABCD的面積是( )

A.
B.5
C.6
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在△AOB中,∠AOB=90°,AO=3cm,BO=4cm.將△AOB繞頂點(diǎn)O,按順時(shí)針?lè)较蛐D(zhuǎn)到△A1OB1處,此時(shí)線(xiàn)段OB1與AB的交點(diǎn)D恰好為AB的中點(diǎn),則線(xiàn)段B1D=cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知△ABC中,AB=AC=5,BC=6,點(diǎn)O是邊BC上的動(dòng)點(diǎn),以點(diǎn)O為圓心,OB為半徑作圓O,交AB邊于點(diǎn)D,過(guò)點(diǎn)D作∠ODP=∠B,交邊AC于點(diǎn)P,交圓O與點(diǎn)E.設(shè)OB=x.
(1)當(dāng)點(diǎn)P與點(diǎn)C重合時(shí),求PD的長(zhǎng);
(2)設(shè)AP﹣EP=y,求y關(guān)于x的解析式及定義域;
(3)聯(lián)結(jié)OP,當(dāng)OP⊥OD時(shí),試判斷以點(diǎn)P為圓心,PC為半徑的圓P與圓O的位置關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖⊙O中,半徑OD⊥弦AB于點(diǎn)C,連結(jié)AO并延長(zhǎng)交⊙O于點(diǎn)E,連結(jié)EC,若AB=8,CD=2,則EC的長(zhǎng)度為(
A.2
B.8
C.2
D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線(xiàn)y= x2+bx+c與x軸交于點(diǎn)A(﹣2,0),交y軸于點(diǎn)B(0, ).直線(xiàn)y=kx 過(guò)點(diǎn)A與y軸交于點(diǎn)C,與拋物線(xiàn)的另一個(gè)交點(diǎn)是D.

(1)求拋物線(xiàn)y= x2+bx+c與直線(xiàn)y=kx 的解析式;
(2)設(shè)點(diǎn)P是直線(xiàn)AD下方的拋物線(xiàn)上一動(dòng)點(diǎn)(不與點(diǎn)A、D重合),過(guò)點(diǎn)P作y軸的平行線(xiàn),交直線(xiàn)AD于點(diǎn)M,作DE⊥y軸于點(diǎn)E.探究:是否存在這樣的點(diǎn)P,使四邊形PMEC是平行四邊形?若存在請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)在(2)的條件下,作PN⊥AD于點(diǎn)N,設(shè)△PMN的周長(zhǎng)為m,點(diǎn)P的橫坐標(biāo)為x,求m與x的函數(shù)關(guān)系式,并求出m的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,小明在繡湖公園的A處正面觀測(cè)解百購(gòu)物中心墻面上的電子屏幕,測(cè)得屏幕上端C處的仰角為30°,接著他正對(duì)電子屏幕方向前進(jìn)7m到達(dá)B處,又測(cè)得該屏幕上端C處的仰角為45°.已知電子屏幕的下端離開(kāi)地面距離DE為4m,小楊的眼睛離地面1.60m,電子屏幕的上端與墻體的頂端平齊.求電子屏幕上端與下端之間的距離CD(結(jié)果保留根號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠B=∠C=36°,AB的垂直平分線(xiàn)交BC于點(diǎn)D,交AB于點(diǎn)H,AC的垂直平分線(xiàn)交BC于點(diǎn)E,交AC于點(diǎn)G,連接AD,AE,則下列結(jié)論錯(cuò)誤的是(
A. =
B.AD,AE將∠BAC三等分
C.△ABE≌△ACD
D.SADH=SCEG

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】近年來(lái),凈水器悄然走進(jìn)千家萬(wàn)戶(hù),某商場(chǎng)從廠家購(gòu)進(jìn)了A,B兩種型號(hào)的凈水器,已知A型比B型凈水器每臺(tái)進(jìn)價(jià)多了300元,用7500元購(gòu)進(jìn)A型凈水器和用6000元購(gòu)進(jìn)B型凈水器的臺(tái)數(shù)相同.
(1)求每臺(tái)A型凈水器和每臺(tái)B型凈水器的進(jìn)價(jià)分別是多少元?
(2)為了增大B型凈水器的銷(xiāo)量,商場(chǎng)決定對(duì)B型凈水器進(jìn)行降價(jià)銷(xiāo)售,經(jīng)市場(chǎng)調(diào)查,當(dāng)每臺(tái)B型凈水器售價(jià)為1800元時(shí),每天可賣(mài)出4臺(tái),在此基礎(chǔ)上,售價(jià)每降低50元,每天將多售出1臺(tái),問(wèn)將每臺(tái)B型凈水器的定價(jià)為多少元時(shí),商家每天銷(xiāo)售B型凈水器的獲得的利潤(rùn)最大?最大為多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案