【題目】如圖,在矩形ABCD中,邊AB的長為3,點E,F(xiàn)分別在AD,BC上,連接BE,DF,EF,BD.若四邊形BFDE是菱形,且OE=AE,則邊BC的長為(
A.2
B.3
C.
D.6

【答案】B
【解析】解: ∵四邊形ABCD是矩形,
∴∠A=90°,∠ABC=90°,AB=CD,
即EA⊥AB,
∵四邊形BFDE是菱形,
∴BD⊥EF,
∵OE=AE,
∴點E在∠ABD的角平分線上,
∴∠ABE=∠EBD,
∵四邊形BFDE是菱形,
∴∠EBD=∠DBC,
∴∠ABE=∠EBD=∠DBC=30°,
∵AB的長為3,
∴BC=3 ,
故選B.
根據(jù)矩形的性質(zhì)和菱形的性質(zhì)得∠ABE=∠EBD=∠DBC=30°,解直角三角形BDC,即可求出BC的長.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y3x212x+17的頂點坐標(biāo)是(  )

A.(﹣2,5B.(﹣2,﹣5C.2,﹣5D.2,5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線PD垂直平分⊙O的半徑OA于點B,PD交⊙O于點C,D,PE是⊙O的切線,E為切點,連接AE,交CD于點F.

(1)若⊙O的半徑為8,求CD的長;

(2)證明:PE=PF;

(3)若PF=13,sinA=,求EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“分組合作學(xué)習(xí)”已成為推動課堂教學(xué)改革,打造自主高效課堂的重要措施.某中學(xué)從全校學(xué)生中隨機抽取部分學(xué)生對“分組合作學(xué)習(xí)”實施后的學(xué)習(xí)興趣情況進行調(diào)查分析,統(tǒng)計圖如下:

請結(jié)合圖中信息解答下列問題:

(1)求出隨機抽取調(diào)查的學(xué)生人數(shù);

(2)補全分組后學(xué)生學(xué)習(xí)興趣的條形統(tǒng)計圖;

(3)分組后學(xué)生學(xué)習(xí)興趣為“中”的所占的百分比和對應(yīng)扇形的圓心角.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,AD∥BC,BA⊥AD,BC=DC,BE⊥CD于點E.
(1)求證:△ABD≌△EBD;
(2)過點E作EF∥DA,交BD于點F,連接AF.求證:四邊形AFED是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在如圖的20166月份的日歷表中,任意框出表中豎列上三個相鄰的數(shù),這三個數(shù)的和不可能是(   )

A. 27 B. 51 C. 69 D. 72

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將多項式x3﹣5xy2﹣7y3+8x2y按某一個字母的升冪排列,正確的是(
A.x3﹣7y3﹣5xy2+8x2y
B.﹣7y3﹣5xy2+8x2y+x3
C.7y3﹣5xy2+8x2y+x3
D.x3﹣5xy2+8x2y﹣7y3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:四邊形ABCD是正方形,E是AB邊上一點,F(xiàn)是BC延長線上一點,且DE=DF.
(1)如圖1,求證:DF⊥DE;
(2)如圖2,連接AC,EF交于點M,求證:M是EF的中點.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市水果批發(fā)部門欲將A市的一批水果運往本市銷售,有火車和汽車兩種運輸方式,運輸過程中的損耗均為200元/時。其它主要參考數(shù)據(jù)如下:

運輸工具

途中平均速度(千米/時)

運費(元/千米)

裝卸費用(元)

火車

100

15

2000

汽車

80

20

900

(1)如果汽車的總支出費用比火車費用多1100元,你知道本市與A市之間的路程是多少千米嗎?請你列方程解答

(2)如果A市與某市之間的距離為S千米,且知道火車與汽車在路上耽誤的時間分別為2小時和3.1小時,你若是某市水果批發(fā)部門的經(jīng)理,要將這種水果從A市運往本市銷售。你將選擇哪種運輸方式比較合算呢?

查看答案和解析>>

同步練習(xí)冊答案