觀察下列各個等式:12=1,12+22=5,12+22+32=14,12+22+32+42=30,….
(1)你能從中推導出計算12+22+32+42+…+n2的公式嗎?請寫出你的推導過程;
(2)請你用(1)中推導出的公式來解決下列問題:
已知:如圖,拋物線y=-x2+2x+3與x、y軸的正半軸分別交于點A、B,將線段OAn等分,分點從左到右依次為A1、A2、A3、A4、A5、A6、…、An-1,分別過這n-1個點作x軸的垂線依次交拋物線于點B1、B2、B3、B4、B5、B6、…、Bn-1,設△OBA1、
△A1B1A2、△A2B2A3、△A3B3A4、…、△An-1Bn-1A的面積依次為S1、S2、S3、S4、…、Sn.
①當n=2010時,求S1+S2+S3+S4+S5+…+S2010的值;
②試探究:當n取到無窮無盡時,題中所有三角形的面積和將是什么值?為什么?

【答案】分析:(1)由n3-(n-1)3=3n2-3n+1公式的n的式子相加推導出12+22+32+42+…+n2的公式.
(2)①結(jié)合拋物線和(1)中推導出的公式求出S1+S2+S3+S4+S5+…+S2010的值;
②當n取到無窮無盡時,取極值,求得三角形的面積.
解答:解:(1)∵n3-(n-1)3=3n2-3n+1,∴當式中的n從1、2、3、依次取到n時,就可得下列n個等式:
13-03=3-3+1,23-13=3×22-3×2+1,33-23=3×32-3×3+1,…,n3-(n-1)3=3n2-3n+1,
將這n個等式的左右兩邊分別相加得:n3=3×(12+22+32+…+n2)-3×(1+2+3+…+n)+n,
即12+22+32+42+…+n2=

(2)先求得A、B兩點的坐標分別為(3,0)、(0,3),
∴點A1、A2、A3、A4、A5、A6、…、An-1的橫坐標分別為,
點B1、B2、B3、B4、B5、B6、…、Bn-1的縱坐標分別為
;
=.(3分)
∴①當n=2010時,S1+S2+S3+S4+S5+…+S2010=+-;
②∵;
∴當n取到無窮無盡時,上式的值等于,即所有三角形的面積和等于.(3分)
點評:本題通過推導公式考查了二次函數(shù)圖象上點的坐標特征,題目新穎,有一定的難度.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

12、觀察下列各個算式:1×3+1=4=22;2×4+1=9=32;3×5+1=16=42;4×6+1=25=52;根據(jù)上面的規(guī)律,請你用一個含n(n>0的整數(shù))的等式將上面的規(guī)律表示出來
n(n+2)+1=(n+1)2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

觀察下列各個等式:12=1,12+22=5,12+22+32=14,12+22+32+42=30,….
(1)你能從中推導出計算12+22+32+42+…+n2的公式嗎?請寫出你的推導過程;
(2)請你用(1)中推導出的公式來解決下列問題:
已知:如圖,拋物線y=-x2+2x+3與x、y軸的正半軸分別交于點A、B,將線段OAn等分,分點從左到右依次為A1、A2、A3、A4、A5、A6、…、An-1,分別過這n-1個點作x軸的垂線依次交拋物線于點B1、B2、B3、B4、B5、B6、…、Bn-1,設△OBA1、
△A1B1A2、△A2B2A3、△A3B3A4、…、△An-1Bn-1A的面積依次為S1、精英家教網(wǎng)S2、S3、S4、…、Sn.
①當n=2010時,求S1+S2+S3+S4+S5+…+S2010的值;
②試探究:當n取到無窮無盡時,題中所有三角形的面積和將是什么值?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

觀察下列各個等式:12=1,12+22=5,12+22+32=14,12+22+32+42=30,….
(1)你能從中推導出計算12+22+32+42+…+n2的公式嗎?請寫出你的推導過程;
(2)請你用(1)中推導出的公式來解決下列問題:
已知:如圖,拋物線y=-x2+2x+3與x、y軸的正半軸分別交于點A、B,將線段OAn等分,分點從左到右依次為A1、A2、A3、A4、A5、A6、…、An-1,分別過這n-1個點作x軸的垂線依次交拋物線于點B1、B2、B3、B4、B5、B6、…、Bn-1,設△OBA1、
△A1B1A2、△A2B2A3、△A3B3A4、…、△An-1Bn-1A的面積依次為S1、S2、S3、S4、…、Sn.
①當n=2010時,求S1+S2+S3+S4+S5+…+S2010的值;
②試探究:當n取到無窮無盡時,題中所有三角形的面積和將是什么值?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源:2012年安徽省宣城中學直升考試數(shù)學模擬試卷(一)(解析版) 題型:解答題

觀察下列各個等式:12=1,12+22=5,12+22+32=14,12+22+32+42=30,….
(1)你能從中推導出計算12+22+32+42+…+n2的公式嗎?請寫出你的推導過程;
(2)請你用(1)中推導出的公式來解決下列問題:
已知:如圖,拋物線y=-x2+2x+3與x、y軸的正半軸分別交于點A、B,將線段OAn等分,分點從左到右依次為A1、A2、A3、A4、A5、A6、…、An-1,分別過這n-1個點作x軸的垂線依次交拋物線于點B1、B2、B3、B4、B5、B6、…、Bn-1,設△OBA1、
△A1B1A2、△A2B2A3、△A3B3A4、…、△An-1Bn-1A的面積依次為S1、S2、S3、S4、…、Sn.
①當n=2010時,求S1+S2+S3+S4+S5+…+S2010的值;
②試探究:當n取到無窮無盡時,題中所有三角形的面積和將是什么值?為什么?

查看答案和解析>>

同步練習冊答案