【題目】已知,A,B在數(shù)軸上對(duì)應(yīng)的數(shù)分別用a,b表示,且(ab+100)2+|a﹣20|=0,P是數(shù)軸上的一個(gè)動(dòng)點(diǎn).
(1)在數(shù)軸上標(biāo)出A、B的位置,并求出A、B之間的距離.
(2)已知線段OB上有點(diǎn)C且|BC|=6,當(dāng)數(shù)軸上有點(diǎn)P滿足PB=2PC時(shí),求P點(diǎn)對(duì)應(yīng)的數(shù).
(3)動(dòng)點(diǎn)P從原點(diǎn)開始第一次向左移動(dòng)1個(gè)單位長(zhǎng)度,第二次向右移動(dòng)3個(gè)單位長(zhǎng)度,第三次向左移動(dòng)5個(gè)單位長(zhǎng)度第四次向右移動(dòng)7個(gè)單位長(zhǎng)度,….點(diǎn)P能移動(dòng)到與A或B重合的位置嗎?若都不能,請(qǐng)直接回答.若能,請(qǐng)直接指出,第幾次移動(dòng)與哪一點(diǎn)重合.
【答案】(1)A、B位置如圖所示,30;(2)﹣6或2;(3)第20次P與A重合;點(diǎn)P與點(diǎn)B不重合.
【解析】
(1)先根據(jù)非負(fù)數(shù)的性質(zhì)求出a,b的值,在數(shù)軸上表示出A、B的位置,根據(jù)數(shù)軸上兩點(diǎn)間的距離公式,求出A、B之間的距離即可;(2)設(shè)P點(diǎn)對(duì)應(yīng)的數(shù)為x,當(dāng)P點(diǎn)滿足PB=2PC時(shí),分三種情況討論,根據(jù)PB=2PC求出x的值即可;(3)根據(jù)第一次點(diǎn)P表示﹣1,第二次點(diǎn)P表示2,點(diǎn)P表示的數(shù)依次為﹣3,4,﹣5,6…,找出規(guī)律即可得出結(jié)論.
解:(1)∵(ab+100)2+|a﹣20|=0,
∴ab+100=0,a﹣20=0,
∴a=20,b=﹣10,
∴AB=20﹣(﹣10)=30,
數(shù)軸上標(biāo)出AB得:
(2)∵|BC|=6且C在線段OB上,
∴xC﹣(﹣10)=6,
∴xC=﹣4,
∵PB=2PC,
當(dāng)P在點(diǎn)B左側(cè)時(shí)PB<PC,此種情況不成立,
當(dāng)P在線段BC上時(shí),
xP﹣xB=2(xc﹣xp),
∴xp+10=2(﹣4﹣xp),
解得:xp=﹣6,
當(dāng)P在點(diǎn)C右側(cè)時(shí),
xp﹣xB=2(xp﹣xc),
xp+10=2xp+8,
xp=2,
綜上所述P點(diǎn)對(duì)應(yīng)的數(shù)為﹣6或2.
(3)第一次點(diǎn)P表示﹣1,第二次點(diǎn)P表示2,依次﹣3,4,﹣5,6…
則第n次為(﹣1)nn,
點(diǎn)A表示20,則第20次P與A重合;
點(diǎn)B表示﹣10,點(diǎn)P與點(diǎn)B不重合.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在數(shù)軸上點(diǎn)A,點(diǎn)B,點(diǎn)C表示的數(shù)分別為﹣2,1,6.
(1)線段AB的長(zhǎng)度為 個(gè)單位長(zhǎng)度,線段AC的長(zhǎng)度為 個(gè)單位長(zhǎng)度.
(2)點(diǎn)P是數(shù)軸上的一個(gè)動(dòng)點(diǎn),從A點(diǎn)出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度,沿?cái)?shù)軸的正方向運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒(0≤t≤8).用含t的代數(shù)式表示:線段BP的長(zhǎng)為 個(gè)單位長(zhǎng)度,點(diǎn)P在數(shù)軸上表示的數(shù)為 ;
(3)點(diǎn)M,點(diǎn)N都是數(shù)軸上的動(dòng)點(diǎn),點(diǎn)M從點(diǎn)A出發(fā)以每秒4個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),點(diǎn)N從點(diǎn)C出發(fā)以每秒3個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng).設(shè)點(diǎn)M,N同時(shí)出發(fā),運(yùn)動(dòng)時(shí)間為x秒.點(diǎn)M,N相向運(yùn)動(dòng),當(dāng)點(diǎn)M,N兩點(diǎn)間的距離為13個(gè)單位長(zhǎng)度時(shí),求x的值,并直接寫出此時(shí)點(diǎn)M在數(shù)軸上表示的數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB⊥BC于點(diǎn)B,DC⊥BC于點(diǎn)C,DE平分∠ADC交BC于點(diǎn)E,點(diǎn)F為線段CD延長(zhǎng)線上一點(diǎn),∠BAF=∠EDF.
(1)求證:∠DAF=∠F;
(2)在不添加任何輔助線的情況下,請(qǐng)直接寫出所有與∠CED互余的角.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,⊙O的半徑為1,P是坐標(biāo)系內(nèi)任意一點(diǎn),點(diǎn)P到⊙O的距離SP的定義如下:若點(diǎn)P與圓心O重合,則SP為⊙O的半徑長(zhǎng);若點(diǎn)P與圓心O不重合,作射線OP交⊙O于點(diǎn)A,則SP為線段AP的長(zhǎng)度.
圖1為點(diǎn)P在⊙O外的情形示意圖.
(1)若點(diǎn)B(1,0),C(1,1),D(0, ),則SB=;SC=;SD=;
(2)若直線y=x+b上存在點(diǎn)M,使得SM=2,求b的取值范圍;
(3)已知點(diǎn)P,Q在x軸上,R為線段PQ上任意一點(diǎn).若線段PQ上存在一點(diǎn)T,滿足T在⊙O內(nèi)且ST≥SR , 直接寫出滿足條件的線段PQ長(zhǎng)度的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,cosA= ,D為AB上一點(diǎn),且AD:BD=1:2,若BC=3 ,求CD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=﹣2x的圖象與反比例函數(shù)y= 的圖象交于點(diǎn)A(﹣1,n).
(1)求反比例函數(shù)y= 的解析式;
(2)若P是坐標(biāo)軸上一點(diǎn),且滿足PA=OA,直接寫出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為發(fā)展校園足球運(yùn)動(dòng),某縣城區(qū)四校決定聯(lián)合購買一批足球運(yùn)動(dòng)裝備,市場(chǎng)調(diào)查發(fā)現(xiàn):甲、乙兩商場(chǎng)以同樣的價(jià)格出售同種品牌的足球隊(duì)服和足球,已知每套隊(duì)服比每個(gè)足球多50元,兩套隊(duì)服與三個(gè)足球的費(fèi)用相等,經(jīng)洽談,甲商場(chǎng)優(yōu)惠方案是:每購買十套隊(duì)服,送一個(gè)足球;乙商場(chǎng)優(yōu)惠方案是:若購買隊(duì)服超過80套,則購買足球打八折.
(1)求每套隊(duì)服和每個(gè)足球的價(jià)格是多少?
(2)若城區(qū)四校聯(lián)合購買100套隊(duì)服和a個(gè)足球,請(qǐng)用含a的式子分別表示出到甲商場(chǎng)和乙商場(chǎng)購買裝備所花的費(fèi)用;
(3)假如你是本次購買任務(wù)的負(fù)責(zé)人,你認(rèn)為到哪家商場(chǎng)購買比較合算?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖,△ABC中,AE交BC于點(diǎn)D,∠C=∠E,AD:DE=3: 5,AE=8,BD=4,求DC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A、B都在數(shù)軸上,O為原點(diǎn).
(1)點(diǎn)B表示的數(shù)是_________________;
(2)若點(diǎn)B以每秒2個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向右運(yùn)動(dòng),則2秒后點(diǎn)B表示的數(shù)是________;
(3)若點(diǎn)A、B分別以每秒1個(gè)單位長(zhǎng)度、3個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向右運(yùn)動(dòng),而點(diǎn)O不動(dòng),t秒后,A、B、O三個(gè)點(diǎn)中有一個(gè)點(diǎn)是另外兩個(gè)點(diǎn)為端點(diǎn)的線段的中點(diǎn),求t的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com