如圖,正方形ABCD與正三角形AEF的頂點(diǎn)A重合,將△AEF繞頂點(diǎn)A旋轉(zhuǎn),在旋轉(zhuǎn)過程中,當(dāng)BE=DF時(shí)∠BAE的大小可以是 .
考點(diǎn):正方形的性質(zhì);全等三角形的判定與性質(zhì);旋轉(zhuǎn)的性質(zhì)。
專題:分類討論。
分析:利用正方形的性質(zhì)和等邊三角形的性質(zhì)證明△ABE≌△ADF(SSS),有相似三角形的性質(zhì)和已知條件即可求出當(dāng)BE=DF時(shí),∠BAE的大小,應(yīng)該注意的是,正三角形AEF可以再正方形的內(nèi)部也可以在正方形的外部,所以要分兩種情況分別求解.
解答:解:①當(dāng)正三角形AEF在正方形ABCD的內(nèi)部時(shí),如圖1,
∵正方形ABCD與正三角形AEF的頂點(diǎn)A重合,
當(dāng)BE=DF時(shí),
∴,
∴△ABE≌△ADF(SSS),
∴∠BAE=∠FAD,
∵∠EAF=60°,
∴∠BAE+∠FAE=30°,
∴∠BAE=∠FAD=15°,
②當(dāng)正三角形AEF在正方形ABCD的外部時(shí).如圖2,
∵正方形ABCD與正三角形AEF的頂點(diǎn)A重合,
當(dāng)BE=DF時(shí),
∴,
∴△ABE≌△ADF(SSS),
∴∠BAE=∠FAD,
∵∠EAF=60°,
∴∠BAE+∠FAE=360°﹣60=300°,
∴∠BAE=∠FAD=165°
故答案為:15°或165°.
點(diǎn)評(píng):本題考查了正方形的性質(zhì)、等邊三角形的性質(zhì)、旋轉(zhuǎn)的性質(zhì)以及全等三角形的判定和全等三角形的性質(zhì)和分類討論的數(shù)學(xué)思想,題目的綜合性不。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
A、1 | B、2 | C、3 | D、4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com