【題目】某公司種植和銷售一種野山菌,已知該野山菌的成本是12/千克,規(guī)定銷售價(jià)格不低于成本,又不高于成本的兩倍.經(jīng)過市場(chǎng)調(diào)查發(fā)現(xiàn),某天該野山菌的銷售量y(千克)與銷售價(jià)格x(/千克)的函數(shù)關(guān)系如圖所示:

1)求yx之間的函數(shù)關(guān)系式;

2)求這一天銷售野山菌獲得的利潤W的最大值.

【答案】1y= ;(2)利潤W的最大值為5000元.

【解析】

1)結(jié)合函數(shù)圖象,根據(jù)分段函數(shù)的含義,分段表示出函數(shù)關(guān)系式即可;

2)在x的兩個(gè)不同的取值范圍內(nèi),分別計(jì)算其最大值,進(jìn)行比較取最大值即可得到答案.

1)解:①當(dāng)12≤x≤20時(shí),設(shè)y=kx+b代入(12,2000),(20,400),

,

解得:,

y=-200x+4400

②當(dāng)20<x≤24時(shí),y=400

綜上,y= ;

2)解:①當(dāng)12≤x≤20時(shí),

W=(x-12)y=(x-12)(-200x+4400)=-200(x-17)2+5000

當(dāng)x=17時(shí),W的最大值為5000

②當(dāng)20<x≤24時(shí),W=(x-12)y=400x-4800,當(dāng)x=24時(shí),W的最大值為4800

綜上,利潤W的最大值為5000元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2020年新冠病毒在全球蔓延,口罩成為抗擊病毒傳播的有效物資,某廠需要生產(chǎn)一批口罩,該廠有甲、乙兩種型號(hào)的生產(chǎn)機(jī)器,若用甲機(jī)器單獨(dú)完成這批訂單需要消耗原料費(fèi)76萬元,若用乙機(jī)器單獨(dú)完成需要消耗原料費(fèi)26萬元,已知每生產(chǎn)一個(gè)口罩,甲機(jī)器消耗原料費(fèi)比乙機(jī)器消耗原料費(fèi)多用0.5元.

1)求乙機(jī)器生產(chǎn)一個(gè)口罩需要消耗多少原料費(fèi)?

2)為了盡快完成這批訂單,該廠決定使用甲、乙機(jī)器一起完成這批訂單,消耗原料費(fèi)合計(jì)不超過39萬元,則乙機(jī)器至少生產(chǎn)多少口罩?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線的圖象經(jīng)過點(diǎn),,,已知點(diǎn)的坐標(biāo)為,點(diǎn)坐標(biāo)為,點(diǎn)軸的正半軸,且

1)求拋物線的函數(shù)解析式;

2)若直線從點(diǎn)開始沿軸向下平移,分別交軸、軸于點(diǎn)、

①當(dāng)時(shí),在線段上否存在點(diǎn),使得點(diǎn),構(gòu)成等腰直角三角形?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

②以動(dòng)直線為對(duì)稱軸,線段關(guān)于直線的對(duì)稱線段與二次函數(shù)圖象有交點(diǎn),請(qǐng)直接寫出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校申報(bào)“跳繩特色運(yùn)動(dòng)”學(xué)校一年后,抽樣調(diào)查了部分學(xué)生的“1分鐘跳繩成績(jī),并制成了下面的頻數(shù)分布直方圖(每小組含最小值,不含最大值)和扇形圖.

1)補(bǔ)全頻數(shù)分布直方圖,扇形圖中m= ;

2)若把每組中各個(gè)數(shù)據(jù)用這組數(shù)據(jù)的中間值代替(如A80≤x100的中間值是(=90次),則這次調(diào)查的樣本平均數(shù)是多少;

3)如果“1分鐘跳繩成績(jī)大于或等于120次為優(yōu)秀,那么該校2100名學(xué)生中“1分鐘跳繩成績(jī)?yōu)閮?yōu)秀的大約有多少人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】感知:如圖,在等腰直角三角形ABC中,∠ACB=90°,BCm,將邊AB繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°得到線段BD,過點(diǎn)DDECBCB的延長(zhǎng)線于點(diǎn)E,連接CD

(1)求證:△ACB≌△BED;

(2)△BCD的面積為   (用含m的式子表示).

拓展:如圖,在一般的Rt△ABC,∠ACB=90°,BCm,將邊AB繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°得到線段BD,連接CD,用含m的式子表示△BCD的面積,并說明理由.

應(yīng)用:如圖,在等腰△ABC中,ABACBC=8,將邊AB繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°得到線段BD,連接CD,則△BCD的面積為   ;若BCm,則△BCD的面積為   (用含m的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明騎自行車去上學(xué)途中,經(jīng)過先上坡后下坡的一段路,在這段路上所騎行的路程(米)與時(shí)間(分鐘)之間的函數(shù)關(guān)系如圖所示.下列結(jié)論:①小明上學(xué)途中下坡路的長(zhǎng)為1800米;②小明上學(xué)途中上坡速度為150米/分,下坡速度為200米/分;③如果小明放學(xué)后按原路返回,且往返過程中,上、下坡的速度都相同,則小明返回時(shí)經(jīng)過這段路比上學(xué)時(shí)多用1分鐘;④如果小明放學(xué)后按原路返回,返回所用時(shí)間與上學(xué)所用時(shí)間相等,且返回時(shí)下坡速度是上坡速度的1.5倍,則返回時(shí)上坡速度是160米/分其中正確的有( )

A.①④B.②③C.②③④D.②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ABAC,以AB為直徑的O分別交BC于點(diǎn)D,交CA的延長(zhǎng)線于點(diǎn)E,過點(diǎn)DDHAC,垂足為點(diǎn)H,連接DE,交AB于點(diǎn)F

1)求證:DHO的切線;

2)若O的半徑為4,

當(dāng)AEFE時(shí),求 的長(zhǎng)(結(jié)果保留π);

當(dāng) 時(shí),求線段AF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一艘船由A港沿北偏東65°方向航行kmB港,然后再沿北偏西40°方向航行至C港,C港在A港北偏東20°方向.

求:(1)∠C的度數(shù);

2AC兩港之間的距離為多少km.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB4,BC6E是邊AD的中點(diǎn),將△ABE折疊后得到△A′BE,延長(zhǎng)BA′CD于點(diǎn)F,則DF的長(zhǎng)為______

查看答案和解析>>

同步練習(xí)冊(cè)答案