【題目】如圖,在菱形ABCD中,AB=,∠B=120°,點E是AD邊上的一個動點(不與A,D重合),EF∥AB交BC于點F,點G在CD上,DG=DE.若△EFG是等腰三角形,則DE的長為_____.
【答案】1或
【解析】
由四邊形ABCD是菱形,得到BC∥AD,由于EF∥AB,得到四邊形ABFE是平行四邊形,根據(jù)平行四邊形的性質(zhì)得到EF∥AB,于是得到EF=AB=,當△EFG為等腰三角形時,①EF=GE=時,于是得到DE=DG=AD÷=1,②GE=GF時,根據(jù)勾股定理得到DE=.
∵四邊形ABCD是菱形,∠B=120°,
∴∠D=∠B=120°,∠A=180°-120°=60°,BC∥AD,
∵EF∥AB,
∴四邊形ABFE是平行四邊形,
∴EF∥AB,
∴EF=AB=,∠DEF=∠A=60°,∠EFC=∠B=120°,
∵DE=DG,
∴∠DEG=∠DGE=30°,
∴∠FEG=30°,
當△EFG為等腰三角形時,
當EF=EG時,EG=,
如圖1,
過點D作DH⊥EG于H,
∴EH=EG=,
在Rt△DEH中,DE==1,
GE=GF時,如圖2,
過點G作GQ⊥EF,
∴EQ=EF=,在Rt△EQG中,∠QEG=30°,
∴EG=1,
過點D作DP⊥EG于P,
∴PE=EG=,
同①的方法得,DE=,
當EF=FG時,由∠EFG=180°-2×30°=120°=∠CFE,此時,點C和點G重合,點F和點B重合,不符合題意,
故答案為:1或.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,五邊形是學校的一塊種植基地示意圖,這塊基地可以分成正方形和,已知這個五邊形的周長為88米,正方形的面積為400平方米.
(1)求正方形的周長;
(2)求點到邊的距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為慶祝重慶南開中學建校83周年暨校運動會,我校初二(21)班準備統(tǒng)一穿初一時期訂制的服裝參加運動會,分別需要增訂“英倫學院風”班服(250元/件)、“”運動褲(90元/件)、“少年的我”短袖恤(40元/件)共50件(三種服裝均有增訂),總花費6000元,且需要增訂“少年的我”短袖恤的件數(shù)最多,則需要增訂“”運動褲__________件.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校數(shù)學興趣小組,對函數(shù)y=|x﹣1|+1的圖象和性質(zhì)進行了探究,探究過程如下:
(1)自變量x的取值范圍是全體實數(shù),x與y的幾組對應值如表:
x | … | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | 4 | 5 | … |
y | … | 5 | 4 | m | 2 | 1 | 2 | 3 | 4 | 5 | … |
其中m= .
(2)如圖,在平面直角坐標系xOy中,描出了上表中各對對應值為坐標的點,根據(jù)描出的點,畫出該函數(shù)的圖象:
(3)根據(jù)畫出的函數(shù)圖象特征,仿照示例,完成下列表格中的函數(shù)變化規(guī)律:
序號 | 函數(shù)圖象特征 | 函數(shù)變化規(guī)律 |
示例1 | 在直線x=1的右側(cè),函數(shù)圖象呈上升狀態(tài) | 當x>1時,y隨x的增大而增大 |
① | 在直線x=1的左側(cè),函數(shù)圖象呈下降狀態(tài) |
|
示例2 | 函數(shù)圖象經(jīng)過點(﹣3,5) | 當x=﹣3時,y=5 |
② | 函數(shù)圖象的最低點是(1,1) |
|
(4)當2<y≤4時,x的取值范圍為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為宣傳6月6日世界海洋日,某校八年級舉行了主題為“珍惜海洋資源,保護海洋生物多樣性”的知識競賽活動.為了解全年級500名學生此次競賽成績(百分制)的情況,隨機抽取了部分參賽學生的成績,整理并繪制出如下不完整的統(tǒng)計表(表1)和統(tǒng)計圖(如圖).請根據(jù)圖表信息解答以下問題:
(1)本次調(diào)查一共隨機抽取了個參賽學生的成績;
(2)表1中a= ;
(3)所抽取的參賽學生的成績的中位數(shù)落在的“組別”是 ;
(4)請你估計,該校九年級競賽成績達到90分以上(含90分)的學生約有多少人.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,一次函數(shù)y=-+b(b>0,b為常數(shù))的圖象與x軸、y軸分別相交于點A、B,半徑為4的⊙O與x軸正半軸交于點C,與y軸正半軸相交于點D.
(1)若直線AB與⊙O相切于弧CD上一點,求b的值;
(2)若直線AB與⊙O有兩個交點F、G.
①b為何值時,⊙O上有且只有3個點到直線AB的距離為2?并求出此時直線被⊙O所截的弦FG的長;
②是否存在這樣的b,使得∠GOF=90°?若存在,求出b的值;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】以四邊形的邊、、、為斜邊分別向外側(cè)作等腰直角三角形,直角頂點分別為、、、,順次連結(jié)這四個點,得四邊形.
(1)如圖1,當四邊形為矩形時,請判斷四邊形的形狀(不要求證明).
(2)如圖2,當四邊形為一般平行四邊形時,設
①試用含的代數(shù)式表示,寫出解答過程;
②求證:,并判斷四邊形是什么四邊形?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,AB=6,BC=8,以其三邊為直徑向三角形外作三個半圓,矩形EFGH的各邊分別與半圓相切且平行于AB或BC,則矩形EFGH的周長是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com