【題目】2019330日,四川省涼山州木里縣境內(nèi)發(fā)生森林火災(zāi),30名左右的撲火英雄犧牲,讓人感到痛心,也再次給我們的防火安全意識(shí)敲響警鐘.為了加強(qiáng)學(xué)生的防火安全意識(shí),某校舉行了一次“防火安全知識(shí)競(jìng)賽”(滿分100分),賽后從中抽取了部分學(xué)生的成績(jī)進(jìn)行整理,并制作了如下不完整的統(tǒng)計(jì)圖表:

組別

成績(jī)x/

組中值

A

50x60

55

B

60x70

65

C

70x80

75

D

80x90

85

E

90x100

95

請(qǐng)根據(jù)圖表提供的信息,解答下列各題:

1)補(bǔ)全頻數(shù)分布直方圖和扇形統(tǒng)計(jì)圖;

2)分?jǐn)?shù)段80x90對(duì)應(yīng)扇形的圓心角的度數(shù)是   °,所抽取的學(xué)生競(jìng)賽成績(jī)的中位數(shù)落在   區(qū)間內(nèi);

3)若將每組的組中值(各組兩個(gè)端點(diǎn)的數(shù)的平均數(shù))代表各組每位學(xué)生的競(jìng)賽成績(jī),請(qǐng)你估計(jì)該校參賽學(xué)生的平均成績(jī).

【答案】(1)詳見解析;(2)144,80x90;(3)估計(jì)該校參賽學(xué)生的平均成績(jī)是83分.

【解析】

1)用A組的人數(shù)除以所占的百分比得出抽取的學(xué)生總數(shù),再用數(shù)據(jù)總數(shù)減去A、B、CE四個(gè)組的人數(shù)可得D組人數(shù),補(bǔ)全頻數(shù)分布直方圖;用D組人數(shù)除以數(shù)據(jù)總數(shù)得出D組所占百分比,同理求出E組所占百分比,補(bǔ)全扇形統(tǒng)計(jì)圖;

2)用360°乘以D組所占百分比即可求出分?jǐn)?shù)段80≤x90對(duì)應(yīng)扇形的圓心角的度數(shù);根據(jù)中位數(shù)的定義,將這組數(shù)據(jù)按照從小到大的順序排列后,處于中間位置的數(shù)據(jù)(或中間兩數(shù)據(jù)的平均數(shù))即為中位數(shù);

3)先利用加權(quán)平均數(shù)的計(jì)算公式求出樣本平均數(shù),再利用樣本估計(jì)總體的思想解決問題即可.

解:(1)樣本容量是:10÷5%200,

D組人數(shù)是:200﹣(10+20+30+60)=80(人),

D組所占百分比是:×100%40%

E組所占百分比是:×100%30%

補(bǔ)全頻數(shù)分布直方圖和扇形統(tǒng)計(jì)圖如圖所示:

2)分?jǐn)?shù)段80≤x90對(duì)應(yīng)扇形的圓心角的度數(shù)是:360°×0.40144°;

一共有200個(gè)數(shù)據(jù),按照從小到大的順序排列后,第100個(gè)與第101個(gè)數(shù)據(jù)都落在D組,

所以所抽取的學(xué)生競(jìng)賽成績(jī)的中位數(shù)落在80≤x90區(qū)間內(nèi).

故答案為144,80≤x90;

3)(55×10+65×20+75×30+85×80+95×60÷20083(分).

所以估計(jì)該校參賽學(xué)生的平均成績(jī)是83分.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=ax﹣1的圖象與反比例函數(shù)y=的圖象交于A,B兩點(diǎn),與x軸交于點(diǎn)C,與y軸交于點(diǎn)D,已知OA=,tan∠AOC=

(1)求a,k的值及點(diǎn)B的坐標(biāo);

(2)觀察圖象,請(qǐng)直接寫出不等式ax﹣1≥的解集;

(3)在y軸上存在一點(diǎn)P,使得PDCODC相似,請(qǐng)你求出P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】春曉中學(xué)為開展校園科技節(jié)活動(dòng),計(jì)劃購買A型、B型兩種型號(hào)的航模.若購買8個(gè)A型航模和5個(gè)B型航模需用2200元;若購買4個(gè)A型航模和6個(gè)B型航模需用1520元.求A,B兩種型號(hào)航模的單價(jià)分別是多少元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ABC中,CACB,<∠ACB≤90°,點(diǎn)MN分別在邊CA,CB上(不與端點(diǎn)重合),BNAM,射線AGBCBM延長(zhǎng)線于點(diǎn)D,點(diǎn)E在直線AN上,EAED

1)(觀察猜想)如圖1,點(diǎn)E在射線NA上,當(dāng)∠ACB45°時(shí),①線段BMAN的數(shù)量關(guān)系是   ; ②∠BDE的度數(shù)是   

2)(探究證明)如圖2點(diǎn)E在射線AN上,當(dāng)∠ACB30°時(shí),判斷并證明線段BMAN的數(shù)量關(guān)系,求∠BDE的度數(shù);

3)(拓展延伸)如圖3,點(diǎn)E在直線AN上,當(dāng)∠ACB60°時(shí),AB3,點(diǎn)NBC邊上的三等分點(diǎn),直線ED與直線BC交于點(diǎn)F,請(qǐng)直接寫出線段CF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線y=kx(k≠0)經(jīng)過點(diǎn)(12,﹣5),將直線向上平移m(m>0)個(gè)單位,若平移后得到的直線與半徑為6的⊙O相交(點(diǎn)O為坐標(biāo)原點(diǎn)),則m的取值范圍為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題提出:

1)如圖,已知線段ABBC,AB2,BC5,則線段AC的最小值為   ;

問題探究

2)如圖,已知扇形COD中,∠COD90°,DOCO6,點(diǎn)AOC的中點(diǎn),延長(zhǎng)OC到點(diǎn)F,使CFOC,點(diǎn)P 上的動(dòng)點(diǎn),點(diǎn)BOD上的一點(diǎn),BD1

i)求證:△OAP~△OPF;

ii)求BP+2AP的最小值;

問題解決:

3)如圖,有一個(gè)形狀為四邊形ABCD的人工湖,BC9千米,CD4千米,∠BCD150°,現(xiàn)計(jì)劃在湖中選取一處建造一座假山P,且BP3千米,為方便游客觀光,從C、D分別建小橋PD,PC.已知建橋PD每千米的造價(jià)是3萬元,建橋PC每千米的造價(jià)是1萬元,建橋PDPC的總造價(jià)是否存在最小值?若存在,請(qǐng)確定點(diǎn)P的位置并求出總造價(jià)的最小值,若不存在,請(qǐng)說明理由.(橋的寬度忽略不計(jì))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB⊙O的直徑,BC⊙O相切于點(diǎn)B,CD⊙O相切于點(diǎn)D,連結(jié)AD

(1)求證:AD∥OC

(2)小聰與小明在做這個(gè)題目的時(shí)候,對(duì)∠CDA∠AOC之間的關(guān)系進(jìn)行了探究:

小聰說,∠CDA+∠AOC的值是一個(gè)固定的值;

小明說,∠CDA+∠AOC的值隨∠A度數(shù)的變化而變化.

∠CDA+∠AOC的值為y,∠A度數(shù)為x.你認(rèn)為他們之中誰說的是正確的?若你認(rèn)為小聰說的正確,請(qǐng)你求出這個(gè)固定值:若你認(rèn)為小明說的正確,請(qǐng)你求出yx之間的關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)中,拋物線yax2+bx+c過點(diǎn)A(﹣10),B30),C03),點(diǎn)P是直線BC上方拋物線上的一動(dòng)點(diǎn),PEy軸,交直線BC于點(diǎn)E連接AP,交直線BC于點(diǎn) D

1)求拋物線的函數(shù)表達(dá)式;

2)當(dāng)AD2PD時(shí),求點(diǎn)P的坐標(biāo);

3)求線段PE的最大值;

4)當(dāng)線段PE最大時(shí),若點(diǎn)F在直線BC上且∠EFP2ACO,直接寫出點(diǎn)F的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】永康市某校在課改中,開設(shè)的選修課有:籃球,足球,排球,羽毛球,乒乓球,學(xué)生可根據(jù)自己的愛好選修一門,李老師對(duì)九(1)班全班同學(xué)的選課情況進(jìn)行調(diào)查統(tǒng)計(jì),制成了兩幅不完整的統(tǒng)計(jì)圖(如圖).

1)該班共有學(xué)生   人,并補(bǔ)全條形統(tǒng)計(jì)圖;

2)求籃球所在扇形圓心角的度數(shù);

3)九(1)班班委4人中,甲選修籃球,乙和丙選修足球,丁選修排球,從這4人中任選2人,請(qǐng)你用列表或畫樹狀圖的方法,求選出的2人中恰好為1人選修籃球,1人選修足球的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案