【題目】如圖,在△ABC中,AC=BC=25,AB=30,D是AB上的一點(diǎn)(不與A、B重合),DE⊥BC,垂足是點(diǎn)E,設(shè)BD=x,四邊形ACED的周長(zhǎng)為y,則下列圖象能大致反映y與x之間的函數(shù)關(guān)系的是( )
A.
B.
C.
D.
【答案】D
【解析】解:如圖,作CM⊥AB于M.
∵CA=CB,AB=30,CM⊥AB,
∴AM=BM=15,CM= =20
∵DE⊥BC,
∴∠DEB=∠CMB=90°,
∵∠B=∠B,
∴△DEB∽△CMB,
∴ ,
∴ ,
∴DE= x,EB= x,
∴四邊形ACED的周長(zhǎng)為y=25+(25﹣ x)+ x +30﹣x=﹣ x+80.
∵0<x<30,
∴圖象是D.
故選D.
由△DEB∽△CMB,得 ,求出DE、EB,即可解決問(wèn)題.本題考查函數(shù)圖象、等腰三角形的性質(zhì)、相似三角形的判定和性質(zhì)等知識(shí),解題的關(guān)鍵是構(gòu)建函數(shù)關(guān)系式,注意自變量的取值范圍,屬于中考常考題型.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(0,4),△OAB沿x軸向右平移后得到△O′A′B′,點(diǎn)A的對(duì)應(yīng)點(diǎn)A′是直線y= x上一點(diǎn),則點(diǎn)B與其對(duì)應(yīng)點(diǎn)B′間的距離為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,點(diǎn)D,E分別在AC,BC上,且∠CDE=∠B,將△CDE沿DE折疊,點(diǎn)C恰好落在AB邊上的點(diǎn)F處.若AC=8,AB=10,則CD的長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義: 數(shù)學(xué)活動(dòng)課上,李老師給出如下定義:如果一個(gè)三角形有一邊上的中線等于這條邊的一半,那么稱這個(gè)三角形為“智慧三角形”.
理解:
(1)如圖1,已知A、B是⊙O上兩點(diǎn),請(qǐng)?jiān)趫A上找出滿足條件的點(diǎn)C,使△ABC為“智慧三角形”(畫(huà)出點(diǎn)C的位置,保留作圖痕跡);
(2)如圖2,在正方形ABCD中,E是BC的中點(diǎn),F(xiàn)是CD上一點(diǎn),且CF= CD,試判斷△AEF是否為“智慧三角形”,并說(shuō)明理由; 運(yùn)用:
(3)如圖3,在平面直角坐標(biāo)系xOy中,⊙O的半徑為1,點(diǎn)Q是直線y=3上的一點(diǎn),若在⊙O上存在一點(diǎn)P,使得△OPQ為“智慧三角形”,當(dāng)其面積取得最小值時(shí),直接寫(xiě)出此時(shí)點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著社會(huì)經(jīng)濟(jì)的發(fā)展和城市周邊交通狀況的改善,旅游已成為人們的一種生活時(shí)尚,洪祥中學(xué)開(kāi)展以“我最喜歡的風(fēng)景區(qū)”為主題的調(diào)查活動(dòng),圍繞“在松峰山、太陽(yáng)島、二龍山和鳳凰山四個(gè)風(fēng)景區(qū)中,你最喜歡哪一個(gè)?(必選且只選一個(gè))”的問(wèn)題,在全校范圍內(nèi)隨機(jī)抽取了部分學(xué)生進(jìn)行問(wèn)卷調(diào)查,將調(diào)查結(jié)果整理后繪制成如圖所示的不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)圖中提供的信息回答下列問(wèn)題:
(1)本次調(diào)查共抽取了多少名學(xué)生?
(2)通過(guò)計(jì)算補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若洪祥中學(xué)共有1350名學(xué)生,請(qǐng)你估計(jì)最喜歡太陽(yáng)島風(fēng)景區(qū)的學(xué)生有多少名.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB為⊙O的直徑,弦CD⊥AB,垂足為點(diǎn)P,直線BF與AD的延長(zhǎng)線交于點(diǎn)F,且∠AFB=∠ABC.
(1)求證:直線BF是⊙O的切線.
(2)若CD=2 ,OP=1,求線段BF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)C在AB的延長(zhǎng)線上,CD與⊙O相切于點(diǎn)D,CE⊥AD,交AD的延長(zhǎng)線于點(diǎn)E.
(1)求證:∠BDC=∠A;
(2)若CE=4,DE=2,求AD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知菱形OABC的頂點(diǎn)O(0,0),B(2,2),若菱形繞點(diǎn)O逆時(shí)針旋轉(zhuǎn),每秒旋轉(zhuǎn)45°則第30秒時(shí),菱形的對(duì)角線交點(diǎn)D的坐標(biāo)為( )
A.(1,﹣1)
B.(﹣1,﹣1)
C.( ,0)
D.(0,﹣ )
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com